Pour un feuilletage holomorphe non singulier
Given a non-singular holomorphic foliation
@article{AIF_1989__39_2_417_0, author = {Girbau, Joan and Nicolau, Marcel}, title = {On deformations of holomorphic foliations}, journal = {Annales de l'Institut Fourier}, pages = {417--449}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {39}, number = {2}, year = {1989}, doi = {10.5802/aif.1172}, mrnumber = {91b:32021}, zbl = {0659.32019}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1172/} }
TY - JOUR AU - Girbau, Joan AU - Nicolau, Marcel TI - On deformations of holomorphic foliations JO - Annales de l'Institut Fourier PY - 1989 SP - 417 EP - 449 VL - 39 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1172/ DO - 10.5802/aif.1172 LA - en ID - AIF_1989__39_2_417_0 ER -
Girbau, Joan; Nicolau, Marcel. On deformations of holomorphic foliations. Annales de l'Institut Fourier, Tome 39 (1989) no. 2, pp. 417-449. doi : 10.5802/aif.1172. https://www.numdam.org/articles/10.5802/aif.1172/
[1] On the Solutions of Analytic Equations, Inventiones Math., 5 (1968), 277-291. | MR | Zbl
,[2] Déformations équivariantes d'espaces analytiques complexes compacts, Ann. Sc. Ec. Norm. Sup., 11 (1978), 391-406. | Numdam | MR | Zbl
,[3] Déformations régulières, Sém. M. Cartan, 13e année, (1960-1961), n° 3. | Numdam | Zbl
,[4] Le problème des modules pour les variétés analytiques complexes, Sém. Bourbaki, 17e année (1964-1965), n° 277. | Numdam | Zbl
,[5] Le problème des modules pour les sous-espaces analytiques compactes d'un espace analytique donné, Ann. Inst. Fourier, Grenoble, 16-1 (1966), 1-95. | Numdam | MR | Zbl
,[6] Le problème des modules locaux pour les espaces ℂ-analytiques compacts, Ann. Sc. Ec. Norm. Sup., 7 (1974), 569-602. | Numdam | MR | Zbl
,[7] Deformation theory for holomorphic foliations, J. Diff. Geom., 14 (1979), 317-337. | MR | Zbl
, ,[8] Holomorphic Foliations and Deformations of the Hopf foliation, Pacific J. of Math., 112 (1984), 69-81. | MR | Zbl
, ,[9] Cohomologie non abélienne et espaces fibrés, Bull. Soc. Math. de France, 85 (1957), 135-220. | Numdam | MR | Zbl
,[10] On deformations of transversely holomorphic foliations, Journal für die reine and angew. Math., 345 (1983), 122-147. | MR | Zbl
, , ,[11] Deformations of holomorphic foliations and transversely holomorphic foliations, Research Notes in Math., 131 (1985), 162-173. | MR | Zbl
, ,[12] Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1964.
,[13] Transverse Deformations of Holomorphic Foliations, Contemporary Math., 58, part I, 127-139. | MR | Zbl
,[14] Deformations of Transversely Holomorphic Flows on Spheres and Deformations of Hopf Manifolds, Compositio Math., 55 (1985), 241-251. | Numdam | MR | Zbl
,[15] Deformations of Symmetric Products. Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Studies, 97 (1981), 319-342. | MR | Zbl
,[16] On deformation of Complex Analytic Structures. I and II, Ann. of Math., 67 (1958), 328-466. | MR | Zbl
, ,[17] Multifoliate Structures, Ann. of Math., 74 (1961), 52-100. | MR | Zbl
, ,[18] Deformations of Compact Complex Manifolds, Montreal, 1971. | MR | Zbl
,[19] Analytic Spaces. L'enseignement Math., t. XIV (1968), 1-28. | MR | Zbl
,[20] Complex Manifolds, New York, 1971. | MR | Zbl
, ,[21] A Complex Frobenius Theorem, Seminar of Analytic Functions, Inst. for Advanced Study, Princeton, (1957), 172-189. | Zbl
,[22] Vanishing Theorems on Complex Manifolds, Progress in Math., Birkhäuser, Vol. 56 (1985). | MR | Zbl
, ,[23] Obstructions to the existence of a Space of Moduli. Papers in Honour of K. Kodaira, Princeton Univ. Press, (1969), 403-414. | MR | Zbl
,[24] A Theorem of Completenes for families of Compact Analytic Spaces, Trans. of the A.M.S., 163 (1972), 147-155. | MR | Zbl
,[25] Versal deformations of Hopf surfaces, Journal für die reine and angew. Math., 345 (1987), 122-147.
,- Invariance of basic Hodge numbers under deformations of Sasakian manifolds, Annali di Matematica Pura ed Applicata (1923 -), Volume 200 (2021) no. 4, p. 1451 | DOI:10.1007/s10231-020-01044-8
- Three-dimensional 𝒩 = 2 supersymmetric gauge theories and partition functions on Seifert manifolds: A review, International Journal of Modern Physics A, Volume 34 (2019) no. 23, p. 1930011 | DOI:10.1142/s0217751x19300114
- Chapter 2 Foliations, Volume 2 (2006), p. 35 | DOI:10.1016/s1874-5741(06)80005-1
Cité par 3 documents. Sources : Crossref