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COMPLEX-SYMMETRIC SPACES

by Ralf LEHMANN

0. Introduction.

Let M be a complete complex Hermitian manifold. Then M is called
a Hermitian symmetric space, if and only if for every x e M there exists
a holomorphic isometry of order two which has x as an isolated fixed
point.

This condition immediately implies that the group of holomorphic
isometries acts transitively on M and that the Hermitian metric is
Kahlerian.

Moreover, each compact Hermitian symmetric space can be written
as a product of a compact torus and a homogeneous projective rational
manifold which is Hermitian symmetric. These manifolds are classified
by using the classification of semisimple Lie algebras (see e.g. [Hel] and
[Ca]).

Generalizations of symmetric spaces to the infinite-dimensional case
have turned out to be very interesting (see e.g. [K]).

We are concerned here with manifolds where the isometry condition
is dropped. These were first considered by Borel ([Bo]).

Let X be a reduced compact complex space and G a complex
subgroup of the complex group of all holomorphic automorphisms. The
pair (X,G) is called complex-symmetric with respect to G or Borel-
symmetric, if and only if for every x e X there exists s^ e G of order
two such that x is an isolated fixed point of Sj,. We call Sj, a holomorphic
symmetry at x .
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homogeneous varieties - Coxeter groups - Fans - Holomorphic involutions - Spherical
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Our purpose here is to describe the classification of complex-
symmetric spaces with an algebraic action of a reductive group.

If (X,G) is complex-symmetric, the group G° has an open orbit and
the number of orbits is finite. Thus (X,G) is almost G "-homogeneous
([Bo]). If we assume in addition that G° is acting transitively, then X
is Hermitian symmetric ([Bo]).

Of course each compact Hermitian symmetric space is complex-
symmetric. Non-homogeneous examples can be produced by blowing
up appropriate points of Hermitian symmetric spaces.

For example. Pi x p^ blown up in the four fixed points of the
product (C^-action is a non-homogeneous complex-symmetric manifold.

Minimal examples can be obtained as follows (§ 1):

Let ^ be a homogeneous C*-principal bundle over a compact torus
and X the natural compactification of ^ as a Pi-bundle. Then X is
complex-symmetric, if and only if ^ (g) ^ is holomorphically trivial
(Lemma 1.2).

On the other hand, the compactification as a Pi-bundle of a
homogeneous C-principal bundle over a compact torus is always complex-
symmetric (Lemma 1.3).

Note that in these cases the Albanese fibration is not trivial.

Since almost homogeneous manifolds of dimension two are well-
known we easily obtain a classification of two-dimensional complex-
symmetric manifolds (Proposition 1.7):

A minimal two-dimensional complex-symmetric manifold is either
a Hermitian symmetric space, a Hirzebruch surface, or one of the
Pi-bundles over a torus introduced above. A Hopf surface is never
complex-symmetric.

In general, the compactification of a positive line bundle over a
Hermitian symmetric space is complex-symmetric.

The examples stated above indicate that in the Kahlerian case it is
reasonable to start the examination of complex-symmetric spaces by
looking at the fiber of the Albanese map, i.e. by looking at algebraic
manifolds with an algebraic group action.

In order to state our results, it is necessary to recall the notion of
a torus embedding.
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A compact torus embedding X is a compactification of an algebraic
torus T ^ (C*)* such that the action of T on itself by translations can
be extended to an action of T on X. A compact torus embedding is
called complex-symmetric, if X is complex-symmetric with respect to a
Lie group G with GQ = T.

Now we are able to state our main results (Theorem 2.16, Theorem 2.22
and Theorem 3.13):

THEOREM. — (1) Let X be a normal compact algebraic space which
is complex-symmetric with respect to a Lie group G. Assume that G° is
reductive and that the action of G is algebraic. Then X is the direct
product of a normal complex-symmetric torus embedding and a Hermitian
symmetric space which is homogeneous via a semisimple group.

(2) Let X be a smooth complex-symmetric torus embedding. Then X
can be written as a direct product of the following examples :

y . — p .1 1 ' ~ " 1 9

Vg •' = Pi x Pi blown up in two points ;
Fg : = Pi x P^ blown up in four points ;
5^4 : = YQ blown up in four suitable points. D

Since Hermitian symmetric spaces are completely classified, this
Theorem yields a complete classification in the case of reductive G°
and smooth^.

The first to analyse this situation was Ahiezer ([A]). He assumed
that X is complex-symmetric with respect to G with 6'° semisimple. It
is shown that there exists a decomposition G° = 5'i • . . . • Sn such that
the Srorbits in X are either Stein or compact Hermitian symmetric
spaces.

Using the classification of two-orbit-varieties he showed that for
n = 1 and X not G ̂ homogeneous the only possibility is the compact
quadric Qrn on which SO(m,C) acts with two orbits ([A]). But Q^ is
homogeneous via 5'0((m4-l),C) and Hermitian symmetric.

We also first consider the case where X is complex-symmetric with
respect to G with (7° semisimple. The classification is carried out
inductively. Using geometric methods we show that one only has to
consider the case where the open G'°-orbit is Stein. It follows that the
closure of each G'°-orbit is again complex-symmetric and that the non-
compact 5rorbits are affine quadrics. We then show that we have a
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naturally defined biholomorphic mapping from X to a product of
compact quadrics.

Next we prove that a normal space which is complex-symmetric
with respect to a reductive group is a product of a Hermitian symmetric
space and a normal complex-symmetric torus embedding.

We show that the projection of X onto the set of fixed points of
a Borel subgroup B < S realizes A" as a trivial bundle where the fiber
is a Hermitian symmetric space and the base is a normal complex-
symmetric torus embedding. Our proof here follows an idea of Domingo
Luna whom we want to thank very much for his support. Using his
methods our original proof, which used elementary methods but was
quite long, could be shortened a lot.

The classification of complex-symmetric torus embeddings which is
carried out in § 3 makes use of the fundamental fact that a torus
embedding which is a normal variety can be described by systems of
convex rational cones satisfying certain conditions (« fans »).

A necessary and sufficient condition for a non-singular fan £ to
define a smooth complex-symmetric torus embedding can be stated as
follows :

For each cone a e £ there exists a fan automorphism (p^ of order
two such that

(Pal<^ = Id,

and the induced isomorphism on the fan defined by the torus embedding
orb (a) is - Id.

This condition immediately implies a classification in dimension two.

For the general classification we show that the system of vectors
defining the fan of a complex-symmetric torus embedding is the root
system of a Coxeter group, i.e. a finite group generated by reflections.
The corresponding variety is the product of lower-dimensional varieties,
if and only if the Coxeter group is reducible. Proceeding by induction
we make use of the explicit description of the root systems of Coxeter
groups and determine the possibilities for the fans defining the T-stable
divisors. We then show that an irreducible Coxeter group cannot define
a complex-symmetric torus embedding except in dimension two.

Finally we show that in the singular case new examples arise.
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This paper is a presentation of the Main Results of my
Ph. D. Thesis ([L 1]). I want to thank Professor Klaus-Werner Wiegmann
for his constant support of my work and Professor Domingo Luna for
many improvements of the proofs in § 2.

More especially, I want to thank Professor Alan T. Huckleberry for
suggesting the problem and for many useful and interesting discussions.
His strong support and encouragement helped me very much to finish
this project successfully.

1. Examples of complex-symmetric spaces.

Of course each Hermitian symmetric space is complex-symmetric.
Thus tori, projective spaces and Grassmannians are complex-symmetric.

Before giving some non-homogeneous examples we state the following
basic Lemma which is implicitly contained in [Bo] (see [LI] for a
detailed proof).

LEMMA 1.1. — Assume that (X,G) is complex-symmetric and that the
open G°-orbit Q is of the form GQ/^ (T discrete). Then fi. is an abelian
Lie group and the symmetries for Q are of the form

g ̂  gog'^g^gocQ). D

Let X be an almost homogeneous Pi-bundle over a compact torus
T: = C7r which is not holomorphically trivial. Then G°: = Aut^A")0

is abelian ([H-0], p. 93). Either the open (7°-orbit D is a C-principal
bundle over T and X is obtained by adding the infinity-section^, or
Q is a C*-principal bundle and X is obtained by adding the zero-
section N and the infinity-section E. In the latter case X contains the
two line bundles

L: ==7^uQ and L* : =Eufi..

LEMMA 1.2. — The compactification of a C*-principal bundle as a
^i-bundle X over T is complex-symmetric, if and only if L and L* are
equivalent bundles.

Proof. — Assume that X is complex-symmetric. The projection
7i: X-> T is Au4(T)-equivariant ([H-0], p. 83). Thus the symmetries
a^ (resp. dy) for x e Q (resp. y e N) induce a symmetry for n(x) (resp.
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n(y)) which is unique by Lemma 1.1. So if we assume n(x) = n(y) then
a^o Gy induces the identity on T and exchanges AT and E. Thus L and
L* are equivalent bundles.

On the other hand, there exists a homomorphism a: F -> C* such
that X= (C"xp,)/^, where

(z,[xo:Xi]) - (z',[x'o: x\]) o 3yer such that z ' = z + y
and
[xo:xy=[xo:a(y)xi]([Ma]).

The bundles L and L* are equivalent, if and only if a(y) = a( - y), Vy e F.
Then the mappings

(z,[Xo:Xi]) h-> (-z,[xi:Xo])
(resp. (z, [xo: Xi]) h-̂  (- z, [ - X o : xj)) ^

induce well-defined symmetries for points of the open orbit (resp. of N
and E) in X. D

LEMMA 1.3. — The compactification of a C-principal bundle as a
Pi-bundle X over T is always complex-symmetric.

Proof. - There exists a homomorphism p : r -^ C such that
X= (C"xp,)//^ where

(z,[xo:Xi]) - (z\[x'o:x[]) o 3^er such that z ' = z + y
and
[xo:x\] = [xo+p(y)xi:Xi].

It is easy to see that the mapping C T : C " x Pi-^C" x Pi defined by

a(z,[xo:Xi]): = (-z,[-xo:xj)

induces a well-defined mapping CT : X -^ X of order two which has '
isolated fixed points in each G°-orbit. D

Remark. — If the open G^-orbit Q is a C*-principal bundle, then
Q has non-constant holomorphic functions. If 0 is a C-principal bundle,
then 0 can be a Cousin group ([LI]).

Now consider a Hermitian symmetric space Q of the compact type
and a non-trivial C*-principal bundle 9 over Q. By adding the zero-
section ^V and the infinity-section E we obtain a Pi-bundled over Q
which contains the line bundles L: = 3P u N and L* : = 9 u E. We
choose L* such that r^Q.L*) = (0). Then we have
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LEMMA 1.4. - The compactification of a C^-principal bundle ^ over
Q as a Pi-bundle X is complex-symmetric, if and only if r^(g,L) 7^ (0).

Proof. - Let n: X -> Q be the projection and S : = Au4(g). Then
G: = Au4(D° ^ (5-C*) X TQ(Q,L), where 5 is a finite cover of 5'
stabilizing E and N , Ye(Q,L) acts on L (hence on X) by
o(x): = x + a(7t(x)) and the C*-action on X is induced by the natural
C*-action on ^ ([H-0], p. 99).

If r^(fi,L) = r^(e,L*) = (0), then the G-orbits on X are ^, £'
and N. Assume that X is complex-symmetric. The base of the normalizer-
fibration of the open orbit is Q ([H-0], p. 81), and each symmetry o
for ^ is a bundle automorphism by Lemma 1.1. Thus a(E) = N (again
by Lemma 1.1) and 7c(a(x)) = o-(7c(x)) for a suitable oeAut^g).
Moreover, a e 5' ([Hel], p. 305). On the other hand, a induces a bundle
automorphism stabilizing E and N . As in the proof of Lemma 1.2 we
see that L and L* are equivalent bundles. This is impossible since
^(g.Z) ^ H\Q,(9*) has no torsion. Thus A" is not complex-symmetric.

Now let TQ{Q,L) + (0). Then G has two orbits, and we only have
to find symmetries for points in E and N . Let qeQ and a be a
symmetry for q in 0. Then ae S ([Hel], p. 305), and therefore a
induces a bundle automorphism a of X. We can assume that a
stabilizes £ and N . Then pi: = Nnn~l(q) and pg ^ = Enn~l(q) are
fixed points of a. By combining a with an appropriate element of the
center C* of G we obtain an automorphism \|/ such that the differential
of \|x in pi (resp. pa) is — Id. The automorphism \|/2 induces the identity
on Q and stabilizes ^V, E and Tt"1^) pointwise. It is easy to see that
v|/2 = Id and that \|/ is a symmetry for pi and p ^ . D

COROLLARY 1.5. - The Hirzebruch surfaces £„ (n^l) are complex-
symmetric. D

We now give some examples which are not complex-symmetric.

LEMMA 1.6. — A Hopf surface X is never complex-symmetric.

Proof. — Homogeneous Hopf surfaces cannot be complex-symmetric
since a homogeneous complex-symmetric space is Hermitian symmetric
([Bo]). The non-homogeneous Hopf surfaces are G'-equivariant compac-
tifications of abelian groups G. If we consider the induced action of
the universal covering G ^ C2 on the universal covering X= €^{(0,0)},
the open (7-orbit 0 is either C* x C or C* x C*.



380 RALF LEHMANN

If we assume that X is complex-symmetric, the symmetries can be
lifted to automorphisms of X. But these are induced be the mapping
g^g~~1 by Lemma 1.1. Thus the lifted automorphisms don't induce
automorphisms of X. Contradiction. D

We finish this paragraph by giving a complete classification of
minimal complex-symmetric surfaces. This is an immediate consequence
of a Theorem due to Potters ([P]) and of the preceding Lemmas.

PROPOSITION 1.7. — Let X be a minimal complex-symmetric surface.
Then X is one of the following

(1) a product of two compact homogeneous Riemann surfaces ;
(2) a two-dimensional complex torus ;
(3) the projective plane Pg;
(4) the Hirzebruch surface £„, n ^ 2;
(5) an almost-homogeneous Pi-bundle over a complex torus T, where

the open orbit ^ is a C-principal bundle over T ;
(6) an almost-homogeneous Pi-bundle over T, where ^ is a

C*-principal bundle over T with ^2 trivial. D

2. Classification of complex-symmetric
varieties with G° reductive.

In this paragraph we consider the case where (X,G) is a complex-
symmetric space and G0 is reductive. We always assume that X is normal
and algebraic and that the action of G on X is algebraic.

LetG° = S ' T (finite intersection) where S is semisimple and T is
an algebraic torus and let g = s ® t be the corresponding decomposition
of the Lie algebra of (7°.

Now let x e X and s^ e G be a symmetry for x . Then 5' and T are
normalized by 5^, and s^ induces a symmetry for the 5'-orbit S(x). At
first we consider the structure of such an 5'-orbit.

There exists a maximal compact subgroup of S u s^(S) containing
the symmetry s^. The identity-component of this group is denoted by
K, its Lie algebra by I . It follows that K is maximal compact in
5'([Mo]), hence semisimple.
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Since s^ defines an involutive automorphism CT of I, the K-orbit
K(x) carries the structure of a Riemannian symmetric space of the
compact type ([Hel]).

Let I = ?i © • • • © ?m be the decomposition of f in simple ideals.
A factor ?; is either stabilized by a or two isomorphic factors are
exchanged by CT . So we have a decomposition

r= ii © • • • © in
in minimal c-stable ideals. Note that this decomposition depends on
the 5'-orbit.

Denoting the restriction of CT to t, by CT, and letting u, (resp. e,) be
the eigenspaces for the eigenvalues + 1 (resp. — 1) of CT^ we have

^ = u » © e , ,

and the pair (fi,CT,) is an irreducible, orthogonal symmetric Lie algebra
([Hel], p. 309).

If 5.: = t^ and Si is the normal subgroup of S associated to s,,
then the following Lemma due to Ahiezer([A]) holds (see [LI] for a
detailed proof).

LEMMA 2.1. - Consider the Si-orbit S i / H i through x , define
t)i: = Lie(Hi). Then either i)i = u? is maximal reductive and the
Si-orbit is a Stein manifold, or i)i is a maximal parabolic subalgebra
containing u^ and the Si-orbit is a Hermitian symmetric space of the
compact type. D

Remark. — By construction the symmetry Sy induces a symmetry
for the 5'rorbit 5',(x).

Now look at an 5'-orbit S / H . Then for 1): = Lie (H) we have the
inclusion

t) ^ l)i® • • • ©l)n.

Indeed it can be shown ([A] ; [LI] following an idea of Ahiezer) that
we have

I) = I)l© • • • ©^n.

Consider the decomposition of s in simple ideals

S = 5i© • • • ©$„.
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If the automorphism cr induced by a symmetry s^ exchanges §, and
5;, then the fixed point set of a is the diagonal in 5,©s, . Therefore
dime §i(x) = dime §, and 5\(x) has maximal possible dimension. So it
follows that for each element y of the open G'°-orbit Q the symmetry Sy
also exchanges s, and s,, and we have the following

LEMMA 2.2. - Tjf (X,G) is complex-symmetric and G°= S ' T is
reductive, there exists a decomposition S = S^ ' . . . ' Sn of the semisimple
part S such that for each S-orbit S / H in X we have

S / H ° = S , ' . . . • S n I H , ' . . . • H,.

This decomposition is minimal for symmetries of the open G°-orbit. D

In the sequel we will always consider this decomposition.

LEMMA 2.3 ([A]). - Consider an S-orbit S / H and let H,: = H° n 5',.
Denote the normalizer of H°i in 5', by Ns^W). Then the factor groups

Ns,W)/W and Ns(H°)/H°
are finite. D

In order to analyse the structure of a variety X which is complex-
symmetric with respect to a reductive group we need the following

DEFINITION (e.g. [B-L-V]; [L-V]). - Let a reductive group G° act
algebraically on an algebraic variety X. Then X is called spherical, if and
only if a Borel subgroup (and hence every Borel subgroup) of G° has a
dense orbit in X.

It was proved by Vust ([V]) that the quotient of a reductive group
by the set of fixed points of an involutive automorphism is spherical.
Since the compactification of a spherical variety is again spherical by
definition, we have

LEMMA 2.4. - a) Let (X,G) be complex-symmetric and G° = S ' T
reductive. Then X is spherical.

b) Let S = 5" • S " be a decomposition of S into normal factors which
are stabilizedby all symmetries. Then for x e X the analytic sets
S ' ( x ) (resp. S"(x)) are spherical. D

A summary of some of the basic results concerning spherical varieties
can be found in [B-P]. For our arguments the following properties are
important.
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PROPOSITION 2.5. - Let X be spherical, G° reductive and B a Borel
subgroup of G° having a dense open orbit in X. Then each irreducible
G°-stable subvariety of X is again spherical and the groups G° and B
have only finitely many orbits in X.

Moreover, if X is normal, the closure of each G°-orbit in X is again
a normal variety. Q

As a first consequence we note

LEMMA 2.6. - Let S = S ' ' S " be a decomposition of S into normal
factors which are stabilized by all symmetries. Then for each x e X the
analytic sets S\x) (resp. S " ( x ) ) contain a unique closed S'-orbit (resp.
S"-orbit).

__Proof. - It follows from Lemma 2.4 and Proposition 2.5 that
S ' ( x ) consists of finitely many 5"-orbits. By Lemma 2.1 and Lemma 2.2
each 5"-orbit has one end in the sense of Freudenthal.

Now if there exists more than one closed 5"-orbit in S ' ( x ) , there
is a minimal 5"-orbit E c S ' ( x ) having more than one closed 5"-orbit
in its closure. This orbit has more than one end ([A]). Contradiction.

D

The following Lemma on spherical varieties will be used later.

LEMMA 2.7. — Let X be a normal complete spherical variety with
open orbit G / H . If No(H)/H is not finite, then G has more than one
closed G-orbit in X.

Proof. — Normal spherical varieties can be described using
G-in variant discrete normalized valuations of the field C((7/H) ([L-V]);
see [B-P] for a summary). The set of all such valuations is denoted by
i^(G/H) and can be considered as the set of integral points of a
convex rational cone ̂ (G/H) in a finite-dimensional Q-vector space V.

Now if No(H)/H is not finite, the cone ^i^(G/H) is not strongly
convex ([B-P], corollaire 5.3). But a variety with exactly one closed
orbit is described by a strongly convex cone ^ c= V satisfying certain
properties ([B-P], 2.6 ; [L-V]). The completeness of X is equivalent to
the fact that ^(G/H) c= ^ ([B-P], 2.7 ; [L-V]). Therefore, if there is
only one closed orbit, a cone which is not strongly convex is contained
in a cone which is strongly convex. Contradiction.

Thus there is more than one closed G-orbit. D
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The following Lemmas will be important for the classification of
complex-symmetric spaces (X,G) with G° = S semisimple.

LEMMA 2.8. - Let (X,G) be complex-symmetric, normal and G° = S
semisimple. Let S = S' • 5" as above and assume that the S'-orbits in
the open S-orbit Q are compact. Then X is S-equivariantly biholomorphic
to S'(x) x Y (xeQ), \vhere Y is a normal complex-symmetric space mth
respect to a group S mth S° == S " .

Proof. - We first show that all 5"-orbits in X are biholomorphic.
Let x e Q . Then S ' ^ x ) = S ' / P 1 where P ' is maximal parabolic in S ' .
Since parabolic groups are self-normalizing we have S ' ( x ) n S " ( x ) = {x}.
Moreover, S ' ( x ) = K ' / L ' where K' is a maximal compact subgroup of
S ' ([Mon]) and L' is maximal in K' ([Hel]).

Now if S(x) is not compact, then X\S(x) contains an 5'-orbit £\
of codimension one in X, since S(x) is holomorphically convex. The
normality of X implies that S(x) u £\ is smooth. Thus by the
differentiable slice theorem ([Jan]) for y e E^ it follows that L' is
conjugate to a subgroup of lsOy(K'). Since L7 is maximal it is either
conjugate to IsOy(K') or lsOy(K') = K ' . The latter case implies that y
is a fixed point of 5" which is impossible due to faithful linearization.
Thus all 5"-orbits in S(x) u E^ are biholomorphic.

Now if £'1 is not the unique closed 5-orbit, the analytic set Ei is
again a normal variety (Proposition 2.5) containing an 5-orbit £3 of
codimension one in £'1. Again it follows that the 5"-orbits in E^ and
£2 are all biholomorphic. Repeating this procedure we finally arrive at
the unique closed 5'-orbit, and it is clear that all 5"-orbits in X are
biholomorphic.

Moreover, we have that Kf{x)=Sf(x) for all x e X , Thus the
equivalence relation on X defined by the 5"-action is proper and the
geometric quotient Y of X by the ^-action exists and carries the
structure of a normal complex space induced by the projection n: X -> Y
([Ho]; [Car]).

Let P ' : = Iso^(S') and let F be the analytic set of fixed points of
P ' . Then n\F: F -> Y is a bijective holomorphic map. Since Y is normal
the inverse mapping T : Y -> F is a holomorphic section and the mapping

v|/: Y x S ' I P ' -> X
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defined by
^(y,sP') : = 5(TGO) (se^)

is well-defined and biholomorphic.

Since the symmetries respect the decomposition 5" • S " of 5' the Lemma
is proved. D

Remark. — The Lemma remains valid if G° is reductive. The only
difficulty is the fact that then there is more than one closed 6'°-orbit.

By Lemma 2.8 the classification of complex-symmetric spaces (X,G)
with G° == S semisimple is reduced to the case where the open 5-orbit
is Stein.

LEMMA2.9. - Let(,X,G)becomplex-symmetricmthG°=SF=Si ' . . . ' Sn
semisimple. Assume that X is normal and that the open S'orbit ft ;s
Stein. Let E be an S-orbit of codimension one in X. Then there exists
exactly one factor Si of S such that

S,(x)\Si(x) c: E, VxeQ.

Moreover, Si(x) consists of two Si-orbits and is smooth.

Proof. - Lei y e E and J = Ji • . . . • J n : ^ Is0y(5)°. At first we
show that J is not reductive.

Assume that J is reductive. Since £lu E is smooth by faithful
linearization of the ./-action near y we can find a neighbourhood U(y)
of y in X and a one-dimen'sioaal complex smbspace L c: U(y) containing
y which is stable under a maximal compact subgroup of J and with
L n Q = L\{y) ([H-OI, p. 12).

Since dime J = dime (Iso^(5)) + 1 (xeQ arbitrary) the action of J
on L cannot be trivial, and for every x e L it follows that J contains
Iso^(51)0. But then J contains a parabolic factor by Lemma 2,1.
Contradiction.

Next we show that exactly one factor of J is parabolic. If we
assume that more than one factor is parabolic, there exists a factor Sj
which has closed and non-closed orbits of the same dimension, since
the 5j-orbits in Q, are of highest dimension. But each maximal compact
subgroup^ of Sj acts transitively on the compact ^-orbits ([Men]).
Since the A^-orbits in Q are of highest dimension the 5',-orbits in 0
are compact. This is absurd since Q is assumed to be Stein.
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So we may assume J = J ^ J with J^ parabolic and J reductive.
Correspondingly S = 5\ • S ' .

Since J is reductive the action of J can be faithfully linearized
nesiry. Thus there exists a one-dimensional complex subspace L near
y stable under a maximal compact subgroup of Jwith Q n L = L\{y}.
It is clear that J acts trivially onL. By Lemma 2.3 the set of fixed
points of J° in Q consists of finitely many ^i-orbits. Thus L n Q is
contained in an 5'i-orbit 5'i(x) c= Q. Thus it follows that y e 5'iQc).

Moreover, it is clear that 5i is the only factor that contains y in
the closure of its orbits inD.

By construction the set 5'i(x) is locally the set. of fixed points of
the reductive group J. Since 0 u E is smooth it follows that 5\(x) is
smooth. Moreover, the orbit 5'i(x) is the only orbit with y e S ^ x ) .
Otherwise the set of fixed points is not locally irreducible.

Since all symmetries respect the decomposition S = 5i • . . . • Sn of S
the set 5i(x) is complex-symmetric. D

Remark. - The same result can be proved, if G° is reductive ([LI],
p. 33 ff).

COROLLARY 2.10. - Let (X,G) be complex-symmetric, X normal,
G° = S = 5'i • . . . • Sn semisimple, and let the open S-orbit 0 be Stein.
Let E be an S-orbit of codimension one. Then E is normal and complex-
symmetric.

Proof. — The normality follows from Proposition 2.5. By Lemma 2.9
there exists a factor 5'i of S such that 5'i has compact orbits in E and
5z, . . . , Sn have non-compact orbits in E . It is clear that E is the
unique 5-orbit of codimension one with this property. Since the factors
Si are stable under all symmetries by construction, each symmetry has
to stabilize E and thus E. D

Example 2.11. — Consider the compact quadric

f i n — — f b o : ^ 1 : • • • : zj€.P,(C)|zg= fz?l
I i=l J

This quadric is a Hermitian symmetric space for the group 5<9(n+l,!R),
and there is an action of 50(n,C), defined by

^(bo: ̂ i: • • • : zj) = A([z,: z']) : = [zo: Az]
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having two orbits. The closed orbit is a compact quadric
Qn-i = Qn n {zo=Q} and the complement is an affine quadric Q^) which
is known to be simply connected. It can be shown that <3n is complex-
symmetric with respect to SO(n,C), but not homogeneous ([A]).

Moreover, the normalizer-fibration of the open orbit Q(n) <= Qn can
be extended to a holomorphic mapping (p: Qn -> Pn-i? where
(pl6(n) •• Qw -^ (^n-i\Qn-i) is 2 : 1 and the closed 5'0(n,C)-orbit in Qn
is mapped biholomorphically onto @ ,1-1.

However, Pn-i wlt!1 Ais orbit structure is not complex-symmetric.

The following Lemma was proved by Ahiezer for G° simple ([A]).
By Lemma 2.9 it is not difficult to prove it for G° semisimple.

LEMMA 2.12. — Let (X,G) be complex-symmetric, X normal,
G10 = 5'= 5\ • . . . - S n , and let the open S-orbit Q be Stein. Then
&i ^ so(w,,C), the compact Si-orbits are compact quadrics and the non-
compact Si-orbits are affine quadrics.

Proof. — Let JS'i be an 5'-orbit of codimension one. By Lemma 2.9
there exists a factor 5'i of S such that Si(x) is a smooth complex-
symmetric two-orbit variety for x e Q . It was proved by Ahiezer that
$1 ^ so(mi,C) and that S^(x) ^ Qm^ with the orbit structure introduced
above.

Now £'1 is normal (Proposition 2.5) and E^ ^ Qm^-i x Y\ where Vi
is complex-symmetric and S^ ' . . . ' S n has a Stein open orbit in Vi
(Lemma 2.8 and Corollary 2.10). Thus we can apply Lemma 2.9 again
for Yi. Thus there exists a factor 5'z such that $2 ^ so(m2,C), such
that the 5'2-orbits in E^ are isomorphic to Q(^) and such that the
compact 5'2-orbits are compact quadrics Qm^-r Note that the arguments
in Lemma 2.8 imply that all compact 5'rorbits in X are biholomorphic.

It follows that the 5'z-orbits in Q are affine quadrics since the
5'2-orbits in £\ are simply connected finite covers of the 5'z-orbits in 0
by the arguments in Lemma 2.9.

By repeating this procedure it follows that all Srorbits in Q are
affine quadrics.

By applying the same arguments for all 5'-orbits of codimension one
it follows that all non-compact 5'rorbits are affine quadrics. D
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LEMMA 2.13. - Let (X,G) be complex-symmetric, X normal, G° = S
semisimple, and let Q, be Stein. Then for each ie {!,...,n} there exists
exactly one S-orbit E of codimension one such that the Srorbits in £',
are compact.

Proof. - The uniqueness of ^ is clear since affine quadrics have
one end. So we only have to prove the existence.

Let £'1, . . . ,Es be the 5-orbits of codimension one mX. Proceeding
/ s \

by contradiction assume that the 5rorbits in Q. u (J Ej] are affine
quadrics S i / H ^ . \j=i /

For x e Q, the isotropy subalgebra feo^(5',) is an element of a certain
Grassmannian Z. The mapping

T : 0 -^ Z, x ̂  tso^)

is 5'-equivariant and T(Q) is isomorphic to Si/Ns,(Hi). By Lemma 2.3
it follows that T(Q) is Stein.

It follows from Lemma: 2,9 that T is holomorphically extendable to
/ s \ / / s \\

Q u (J E, and that T a u [ j Ej == r(Q).
\J-1 / \ \7=1 //

Thus there exists a non-constant holomoirphic function on X\A
where A is an analytic set of codinaension two.

This is absurd since X is normal. D

The following Lemma is due to Domingo Luna (private communi-
cation). It is essential for tihe proofs of the Main Theorems in this
paragraph aad simplifies our original arguments very much.

LEMMA 2J4. — Let (X,G) be complex-symmetric, X normal and
6'° == T- 5' reductive. Let S = S ' • 5"" be a decomposition of S into normal
factors which are stable under all symmetries. For B' < S ' a Borel
subgroup of 5" denote the set affixed points of B ' in X by X 8 ' .

Then X31 is connected and normal, and for each x e X the analytic
set S ' ( x ) contains a unique fixed point of B ' .

Moreover, the natural G°-equivariant mapping (p', which assigns to
x e X the fixed point of B1 in S ' ( x ) , is algebraic.
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Proof. - Let B ' = T ' \X U ' be the Levi-decomposition of B ' . It
is a standard fact that the fixed point set X17' of U ' is connected.

For x e A^ it follows that the isotropy subgroup Iso^(5'7) does not
contain a reductive factor. This can be seen using the Bruhat-
decomposition of Iso^(5") and Lemma 2.3.

Thus XGX11' implies that Iso^(5") is parabolic (Lemma 2.1 and
Lemma 2.2). Therefore X8' = X^ is connected. Since S ' ( x ) contains a
unique closed 5"-orbit for each x e X by Lemma 2.6 and B ' has exactly
one fixed point in S ' / P ' (if P ' is parabolic in S ' ) the algebraic set
S ' ( x ) contains a unique point ^ > l ( x ) e X B ' . Thus we have a well-defined
mapping q/. We will prove that (p' is algebraic.

Let y e X 6 ' and P + : = lsOy(S'). Consider a Levi-decomposition
P+ = L X Rlt(,P+) and choose an opposite parabolic subgroup P~ . It
follows that P^ r\P~ = L and that we can assume P~ = L X Ru(P~).
By [B-L-V] (Theoreme 1.4) it follows that there exists an affine
P^ -stable neighbourhood Uy of y and an L-stable locally closed subset
Wy of Uy such that

T : Wy X R^P~}^ Uy

( y ' , u ) ^ MCy') (group action)

is an algebraic isomorphism. Thus we have an algebraic mapping
p : ss p f i O T " 1 : Uy -» ̂  where pri denotes the projection onto the
first factor.

Since Wy is affine, normal and L-stable we can consider the
categorical quotient W y / / L which is a normal affine variety. Let n
be the projection Wy -^ W y / / L onto the categorical quotient. Then
n o p : Uy -^ W y / / L is algebraic.

We claim that for xeUy arbitrary the set nop(S(x)r^Uy) is a
point in W y / / L . It is clear that S(x) n Uy is connected and consists
of finitely many P~ -orbits since S(x) is spherical. Thus p(S{x)r\Uy)
consists of finitely many L-orbits by construction and p(S(x)nUy) has
a unique closed L-orbit. So it is clear that no p(S(x)r^Uy) is a point.

Now choose y such that Ay: = {x eX\^(x) eX^nUy} is dense in
X. This is possible since X57 is compact.
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Then Ay n Uy is dense in Uy and it is enough to prove that
^'\Uy is algebraic since for x e A y there exists x e A y F \ U y such that
x = s'(x) (s'e5"».

Let xe Uy with (p'(x)6A^ n L^. By the above remarks is is clear
that n o p o ^ ' ( x ) = n o p ( x ) . Moreover n o p (X^oUy) is injective. Let
y, + y^X3' n Uy. Then S ' ( y , ) n S\y^ = 0 and for Xi (resp. x^)
with (p^Xi) = y^ (resp. (p^Xz) == ^2) the analytic sets 5"(xi) and S ' ^ )
are disjoint. Thus Tiop(xi) ^ nop(x^ which proves the injectivity.

Since n o p(XBtnUy) = no p(Ay) is Zariski-dense and closed in W y / / L
it follows that

n o p ^ r ^ U y ) : X^ r^Uy -> W y / / L

is bijective. Thus X^ n Uy is normal and there exists an inverse mapping
[ i : Wy//L -> X^ n ̂ .

Moreover, by construction

U o TC o p(x) = »A o 7i o p o q/(x) = (p'(x) Vx e C/y

and therefore ^ ' / U y is algebraic and A y C \ U y = Uy.
By the preceding arguments, in order to prove that q/ is algebraic

and that X3' is normal, it is enough to show that for y e X31 arbitrary
the set Ay n Uy (constructed analogously to Ay n Uy) is Zariski-
dense in Uy. Choose y e X 3 arbitrary and construct Uy as above.
Then X31 n Uy n Uy is Zariski-dense in X8' n Uy and
(p'"1^5 r^UyC^Uy) n £/^ is Zariski-dense in (7y since (p'|Ly is algebraic.
Then Ay n (7p is Zariski-dense in Uy. D

Remark 2.15. - By construction q/ is surjective and each fiber of
(p' contains exactly one closed 5"-orbit. Since X3' is normal it can be
identified locally with the categorical quotient of X by the ^-action
([Kr], p. 105). Thus q/ is G'°-equi variant ([Kr], p. 139). D

Now it is possible to classify spaces which are complex-symmetric
with respect to a semisimple group.

THEOREM 2.16. - Let {X,G) be complex-symmetric, X normal,
G° = S = 5'i' . . . • Sn semisimple and assume that the open S-orbit Q
is Stein. Then Q is the product Q(^ x _ . x Q^ of affine quadrics and
X is correspondingly the product Q^ x ... x Q^ of compact quadrics.
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Proof. - We proceed by induction on the number n of factors in
the decomposition S = S ^ ' . . . • Sn. The case n = 1 is Lemma 2.12.
By Lemma 2.12 it follows that we can assume

S = SO(mi,C) x . . . x SO(mn,C).

Let S = S ^ x S ' and let B^ < 5\ (resp. B ' < S ' ) be Borel subgroups of
5'i (resp. of 5"). The corresponding sets of fixed points are denoted by
X^ (resp. X^).

Now let Ei be the unique 5'-orbit of codimension one in X where
Si has compact orbits. By Corollary 2.10 we can apply induction on
Ei. Thus Ei is a product of compact quadrics, and it follows that

^Bl ̂  Qm, x • • • x Qm^ and ^ ̂  Q^.

Next, let (pi (resp. q/) be the projection on XB1 (resp. JT5) introduced
in Lemma 2.14.

From this Lemma it follows that we have an algebraic mapping

(p = (q/,(p0 : X -^ Q^ x (Q^ x ... x Q^) = : X

which is surjective and 5'-equivariant. Note that the 5-action on X is
induced by the 5'raction on 0 .̂ introduced in Example 2.11.

If the open 5'-orbit in X is denoted by Q = S / H , then the open
5'-orbit ft in X is of the form f2 = S/H and the set F: = H/H is
finite.

But (p(Q) = fS is a product of affine quadrics, hence simply connected
(Example 2.11). Thus Q ^ £i.

Now for each f e { l , . . . , n } there exists a unique 5'-orbit £', (resp.
Ei) in A" (resp. X) such that

5,(x)\^(x) c= £,, VxeQ
(resp. ~Si(x)\Si(x) c= ^,, Vxe^).

This follows from Lemma 2.9 for x e 0 (resp. from the product structure
of X for x e ̂ ).

Thus (pCEf) = Ei and it is easy to see that

(p | EI,: Ei -> Ei is biholomorphic.
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Repeating the same arguments for the lower-dimensional ^-orbits we
see that the restriction of (p to each 5'-orbit in X is bijective. Thus it
follows that (p is bijective and therefore a bialgebraic mapping. So the
Theorem is proved by induction. D

COROLLARY 2.17. — Let (X,G) be complex-symmetric. Assume that X
is normal and that G° is semisimple. Then X is homogeneous and therefore
a Hermitian symmetric space of the compact type. D

After having classified spaces which are complex-symmetric with
respect to a semisimple group, we now come back to the case (X,G)
complex-symmetric, G° = S ' T reductive and X normal. First we recall
the definition of a complex-symmetric torus embedding from the
introduction.

DEFINITION. — A compact torus embedding is an algebraic compac-
tification X of an algebraic torus T ^ (C*)* such that the natural action
of T on T given by the group action extends to an algebraic action of
T on X .

A compact torus embedding X is called complex-symmetric, if X is
complex-symmetric with respect to G and G° = T.

So a complex-symmetric torus embedding is a complex-symmetric
space where the symmetries respect the decomposition into T-orbits.

We will prove that a normal space which is complex-symmetric with
respect to a reductive group is biholomorphic to a product of a normal
complex-symmetric torus embedding and a space which is complex-
symmetric with respect to a semisimple group.

The proof follows an idea of Domingo Luna. The original proof
was much more complicated and much longer than the one presented
here.

Now let B < S be a Borel subgroup of S and Y: == Xs be the set
of fixed points of B in X. From Lemma 2.14 it follows that Y is
normal and that we have a G'°-equi variant surjective algebraic
mapping (p : X -> Y by projecting x e X on the unique fixed point of B
in S(x).

It is clear that Y is Testable and consists of finitely many T-orbits.
Moreover, a symmetry Sy for y e Y leaves Y invariant. Thus

LEMMA 2.18. — The set Y === XB is a normal complex-symmetric torus
embedding. D
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Now the set YT of fixed points of F in V is finite by Proposition 2.5.
Let a € Y 7 ' be arbitrary. Then we claim

LEMMA 2.19. — The torus T acts trivially on the set (p'^a).

Proof. - Since (p is G'°-equi variant the set ^>~l(a) is G'°-in variant.
Thus an irreducible component £' of (p'^o) consists of finitely many
G°-orbits and is normal by Proposition 2.5. Moreover, the irreducible
component^ has only one compact G^-orbit since (p"^) n Y = {a}
and each compact 5-orbit has exactly one point of intersection with Y.

Now if op"1^) ^ JT7, the torus T does not act trivially on the open
G^-orbit ^=G°/H of E. Therefore NG.(H)/H is not finite and Q^E
contains more than one compact G°-orbit by Lemma 2.7. Contradiction.
Thus (p"1^) ^ XT. D

By a Theorem of Sumihiro ([Su], p. 8) it follows that each fixed
point a of T in Y has an open T-invariant affine neighbourhood V^ in
Y. There exists an algebraic one-parameter subgroup X,a: C* -^ T with
UC*) == : T^ such that ^ is injective and Y^ = V is discrete.

Moreover, by [T-E] (Theorem 1', p. 8) it follows that ^ can be
chosen such that Va = {y e y|lim ^a(0-^=fl}.

Defining ^ : = cp'^^a) it follows from the G°-equi variance of (p
that ^ is G'°-stable and that

^ == {xe^llimVO.xeq)-1^)}.
(-»0

It is clear that (p'^fl) is a connected component of Z7. Since Ua
is dense in Z it follows from [Ko] (p. 296) that cp'^a) is irreducible.

Now it is possible to analyse the fibers of (p in detail.

LEMMA 2.20. - All fibers of (p are smooth^ consist of finitely many
S'orbits, and have the same dimension.

Proof. - Let a be a fixed point of T. Then Zo: = (p'^a) is
irreducible and consists of finitely many G°-orbits. Thus Za is normal
and complex-symmetric. Moreover, Za is smooth by Corollary 2.17.

Now the set of all points where the fibers are normal and reduced
(resp. smooth) is Zariski-open in Y ([EGA], IV, §12, 1.7) and
r-invariant. Since T acts with finitely many orbits in Y each fiber of (p
is normal (resp. smooth).
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Moreover, it follows from Remark 2.15 and [Kr] (Satz 4, p. 141)
that the set of fibers which consist of finitely many orbits is T-in variant
and Zariski open in X. Thus all fibers of (p consist of finitely many
orbits.

From [G-R] (p. 160) it follows that there exists a fixed point of T
such that Za is maximal-dimensional among all fibers of (p. Thus the
open 5-orbit Qa c= Za has the same dimension as the generic 5-orbits
in X. Since a generic fiber of (p contains a generic 5'-orbit the generic
fibers have the same dimension as Zg. Thus all fibers havfc the same
dimension. Q

It follows from a Theorem of Konarski ([Ko], Theorem 2 ; in the
smooth case cf. Bialynicki-Birula ([BB])) that the mapping

v|̂  Ua -> (p"1^) = Za defined by x i-^lim^(0-x
t^O

is algebraic.

We then have

LEMMA 2.21. — The product mapping

<P x ^a : Ua -> Va x Z^
is biregular.

Proof. - By construction it is clear that (p x \|/^ is algebraic and
surjective.

So it is enough to prove that (p x \|/^ is injective.

Let Zy = (p^Cy) be a fiber of (p|t/a. Then Zy is smooth and S acts
with finitely many orbits on Zy by Lemma 2.20. If we prove that
\|/alZ^: Zy -> Za is bijective for y e Va arbitrary, it is clear that (p x \|/^
is injective.

We will first show that the open 5-orbit fi.y of Zy is mapped onto
the open 5'-orbit Qa <= Za. It is clear that for a point x in the open
G°-orbit 0 c: X the image \|/a(x) is contained in the open 5'-orbit
On c Za. Let 7-^: = Iso^(5'). Then T(x) is an irreducible component of
the set of fixed points of H since Ns(H)/H° is finite by Lemma 2.3.
Again by Lemma 2.3 the image \[/a(T(x)) consists of a point zeQ^ with
ISO,GS)° = H°. Thus \|/^(T(x)n£/J = {z} and it follows that for each
y E Va the open 5'-orbit Qy c= Zy is mapped onto the open orbit Qg c= Za.
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Now we will prove that ^a\Zy: Z y - > Z a is bijective. For the open
5-orbit Sly of Zy we have v|/o(Q^) = Sla and both sets have the same
dimension. Since Sla is simply connected by Corollary 2.17, it follows
that Sly is mapped bijectively ontoOa.

Let Ea be an 5-orbit of codimension one in Z y . Then there exists
an 5-orbit Ey of codimension one in Zy with ^a{Ey) = Ea. Since Ea is
simply connected we have Ey ^ Ea. From Lemma 2.8 and Lemma 2.9
(applied to Zy) it follows that Zy cannot have more 5-orbits of
codimension one than Za (for the orbit structure of Zy we don't need
that Zy is complex-symmetric. We only need the structure of the
5'-orbits and the normality ofZy).

This proves that the mapping v|/a restricted to Sly u {5'-orbits of
codimension one} is bijective onto its image.

The arguments above can be repeated for the lower-dimensional
5-orbits since all 5'-orbits in Za are simply connected by Corollary 2.17,
and the orbit structures of Za and Zy coincide by Lemma 2.8 and
Lemma 2.9.

This proves that v|/a: Zy -> Za is bijective.

Hence (p x \|/a: Ua -> Va x ^a is bijective.
We are now able to prove

D

THEOREM 2.22. — Let (X,G) be a complex-symmetric normal variety
and let G° = T • S be reductive. Then

X ̂  Y x Z (G-equivariantly),
where Y is a normal complex-symmetric torus embedding and Z is a
smooth variety -which is complex-symmetric with respect to a group with
identity component S .

Proof. - Let Y : = X3 (B a Borel subgroup of 5) and let (p : X -> Y
be the algebraic mapping introduced in Lemma 2.14. By Lemma 2.18
the set Y is a normal complex-symmetric torus embedding and by
Lemma 2.21 there exists a finite covering (ya)aeYT with Zariski-open
sets such that

(p-^J^^xZ

where Z is a smooth variety which is complex-symmetric with respect
to a group with identity component S .
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The Theorem is proved, if we show that this fibration is globally
trivial.

Now the transition automorphisms have to respect the 5-orbits of
Z. By Theorem 2.16 and Corollary 2.17 such automorphisms are induced
by automorphisms of the quadric Qn that respect the orbit structure
given by the SO(n,C)-action on Qn as introduced in Example 2.11.
Since Au^(Qn) = SO(n4-l,C) and 7Vso(n+i.c)(SO(n,C))/SO(n,C) is finite
the structure group of the fibration is finite.

Since for a finite group ^ and a covering ^ = (L^-gj with Uij
connected we have H1^,^) = 0 the fibration is trivial. D

Final Remark. - By Theorem 2.16 and Theorem 2.22 the classification
of normal varieties which are complex-symmetric with respect to a
reductive group is reduced to the classification of normal complex-
symmetric torus embeddings.

This will be done for smooth embeddings in the next paragraph.

3. Classification of smooth complex-symmetric
torus embeddings.

In this paragraph all complex-symmetric torus embeddings which
are smooth varieties will be classified (cf. § 2 for the definition). By
Theorem 2.22 this will give us a detailed description of all smooth
varieties which are complex-symmetric with respect to a reductive group.

In order to make the ideas of our proof clearer many calculations
which are basic Linear Algebra are not carried out in detail. These can
be found in [LI] and [L2].

Our proof makes use of the fundamental fact that a normal torus
embedding (i.e. a normal variety which is a torus embedding) can be
described by a system of convex rational cones satisfying certain
conditions. These systems are called fans or finite rational partial
polyhedral decompositions. We will briefly summarize the basic facts
that will be needed (for details cf. [Dan], [T-E] or [Oda]).

Let T ^ (C*)* be an algebraic torus, M the group of characters of
T and N the group of algebraic one-parameter subgroups of T. The
groups N and M are free abelian groups of rank k.
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DEFINITION. - (1) A cone a c N^: = N OR IR 15 ca?fcd a convex
rational polyhedral cone, if there exist primitive vectors v^, . . . , Vs e N
such that

s

a = {xeNn\x == ^ ̂ ,^- ^ 0, f == 1 , . . . , 5} = : <Ui, ...,i^>.

(2) For Vi, . . . , V s C N the cone a = <i^i, . . . , F,> 15 c^ffc^ simplicial,
if the vectors 1^1, .. . ,u, ar^ Jm^ar independent over IR. 7t 15 ca/krf non-
singular, if the vectors are part of a Z-basis of N^ or if <7 = <(0).

(3) ^4 fan in N^ is a finite system £ = {a} of convex rational
polyhedral cones satisfying the following conditions :

(a) each cone does not contain any linear subspace except {0};
(b) if a e S and T is a face of CT (we write T<a), then T e E;
(c) if <7i, (jg e £, ^n <7i n (jg e S, and CTI n 02 fs a face of CTI anJ

as well of a 2 .

The following Proposition makes use of the fact that normal torus
embeddings are covered by T-stable affine open subsets ([Su], p. 8).

PROPOSITION 3.1. — (1) There exists a bijection between

{fans in N^}

{normal torus embeddings X^ of T} ([Oda], p. 16).
and

(2) There is a bijection between

{cones CT e £}
and

{T-stable open affine subsets X^ of X^} ([T-E], p. 24).

(3) A T-equivariant isomorphism f: X^ -^ Xy between normal torus
embeddings induces an isomorphism (p: N —> N such that its scalar
extension (p : N^ -> N^ satisfies

(p(E) = S/ : o (p(a) = : a' e 2V VCT e E ([Oda], p. 10).

(4) There exists a map

orb: Z -> {T-orbits in X^}
such that

orb«0» = T, Ti < T2 o orb(T2) c: orb(Ti),
dim T + dim orb(r) = dim T = k ([Oda], p. 11).
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(5) The variety X^. is smooth, if and only if each cone cr e £ is non-
singular. If X^ is smooth, then orb(cr) 15 again smooth ([T-E], p. 14).

(6) The variety X^ is complete, if and only if supp(S): = I J < j = A ^
([Dan], p. 114). aes

(7) The variety Xj^ can be written as the direct product of lower-
dimensional torus embeddings, if there exist fans 2/ and 57 such that

£ = 5V x y : = {a' x a'la' e £',a' e 57} ([Oda], p. 39). D

DEFINITION. - Let X^ be a smooth torus embedding. Then the one-
dimensional cones a = <u> are called rays. The system of all rays is
called the skeleton of 2

Sk(E): = {i; e N\v primitive, <u> e S}.
The following description of the direct product will be used later.

LEMMA 3.2. — Let £ be a complete non-singular fan in V ' . = N^
(i.e. all cones CT e £ are non-singular). Then £ is the direct product

X = £' x 57

of non-singular lower-dimensional fans, if and only if there exist non-
trivial subspaces V , V" of V such that

(a) V = V C V"
(b) Sk(£) = (Sk(£)nr) u (Sk(L)nV").

Moreover, we then have

Sk(£) n V = Sk(5V) and Sk(£) n V19 = Sk(5;").

^roo/. - If £ is a product, then the existence of subspaces with
these properties is obvious. So we only have to prove the other direction.
Each cone CT e £ can be written as

CT = (v\,...,v'r,v'[, ...,i0 with v\eV, v J e V " .

Thus CT n V == <i/i, .. .,^> e2 is a non-singular cone in F7 since
1/1, . . . , v'r is part of a Z-basis of F'.

Therefore 5V : = r n £ = {or e £|ac: r} and £" : = F" n Z are well-
defined complete non-singular fans, and each cone oeE is contained
in

£: = {alxatf\afe^f,Glfe^lr}.

But since Z is complete we have £ = £. D



COMPLEX-SYMMETRIC SPACES 399

Remark. - Neither the completeness nor the non-singularity of S
can be dropped (cf. [L2], p. 14; Example 3.15).

Let £ be a non-singular fan and ere 2. Then it follows that
orb(a) is again a smooth torus embedding (Proposition 3.1) for the
torus T which is obtained as the quotient of T by the connected ([L2],
Lemma 16) ineffectivity of the T-action on orb(cr).

The set of all cones in 2 which contain CT is called the star of CT

St(o): = {T6£|T>o} ([Dan], p. 115).
We then have

PROPOSITION 3.3 ([Dan], p. 115). - The fan 2 of the torus embedding
orb (a) is obtained by projecting St(a) on the factor space 7VR/(a)R,
where (a)R is the smallest linear subspace of N^ containing a. D

We call a normal compact algebraic torus embedding X a complex-
symmetric torus embedding, if for each x e X there exists a holomorphic
automorphism Sjc of order two such that

(a) x is isolated fixed point of Sj^
(b) Sx is T-equivariant.

It follows from Proposition 3.1 (3) that each symmetry induces a fan
automorphism. These automorphisms will be described in Theorem 3.7.

We first note

LEMMA 3.4. — Let X be a smooth complete torus embedding. Then
there always exist symmetries for the fixed points of the T-action.

Proof. - Let p € X be a fixed point. By [Su] (p. 8) there exists a
T-in variant affine neighbourhood of p . Since X is smooth this
neighbourhood is isomorphic to C* with the standard (C*)*-action
(Proposition 3.1 (5)) and p corresponds to OeC\ The automorphism
x »-> — x of C* is a symmetry for 0. Since this automorphism is induced
by the T-action it can be extended to all of X. D

Symmetries for the other points in X cannot be found so easily : A
fan 2 is called centrally symmetric, if (p = — Id is a fan automorphism,
i.e. <i;i, .. .,u,> e 2 <^<-^i, . . . , -i^>e 2.

Since a complete torus embedding is a compactification of an abelian
group we immediately deduce from Lemma 1.1.
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LEMMA 3.5. — Let X be a complete normal torus embedding mth
open T-orbit Q = T. Then there exist symmetries/or x e Q , if and only
if the associated fan £ is centrally symmetric. D

The following Lemma is proved very easily using faithful linearization
and the fact that the differential of a symmetry at a fixed point x of
a smooth variety is — Id. However, the Lemma is very important for
our results and it is not clear whether it is valid in the singular case.

LEMMA 3.6. — Let X be a complete smooth complex-symmetric torus
embedding and E a T-orbit in X . Then E is again a complete smooth
complex-symmetric torus embedding via the symmetries for the ambient
space. D

It is clear that a symmetry for x e X^ induces a fan automorphism
of order two, i.e. an automorphism (p : N —^ N of order two such that
its scalar extension satisfies (p(cr) e£ Vae £. We now establish a
necessary and sufficient condition for a fan to be the fan of a complex-
symmetric torus embedding.

THEOREM 3.7. — Let £ be a non-singular complete fan in N^. Then
£ is the fan of a complex-symmetric smooth torus embedding, if and only
if £ fulfills the following condition :

For each cone CT e £ there exists a fan automorphism <^o of order t\vo
mth

(pol(cy)R = Id

such that for the induced automorphism

we have
(pa:Ms/((T)R -> Nn/(o)^

< P o = - I d .

Proof. - (1) First assume that X is complete, smooth and complex-
symmetric. Let E = orb (a) = orb«t»i, .. .,^» be a T-orbit, x e E , s^
the symmetry for x, and (p the induced fan automorphism of order
two. Since X is smooth we have E = orb «Ui» n . . . n orb «y,» where
orb «y,)) is a T-invariant divisor. Now each subspace of the tangent
space T^(X) is stabilized by the differential d^s^, since d^s^ = — Id.
Thus (p(<^i)) = (Vi) and (p(o) = CT. Moreover, we have (p(t^) = fi
because the y, are primitive elements of N . This gives (pl(a)iR = Id.
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The symmetry Sy induces - Id on the complete fan corresponding
to the torus embedding E (by Lemma 3.5). This fan is obtained as the
projection of St((r) on A^/((J)|R. So for the induced automorphism (p
of the factor space we have $ = — Id.

Thus the condition is necessary.
(2) Now assume that the fan £ fulfills the condition in the Theorem.

We begin by showing that for a one-dimensional cone a = <i;> the fan
automorphism (pcy induces a symmetry for a point in the one-
codimensional orbit E: = orb «u».

We have E ^ T ' : = T/v (v also denotes a one-parameter subgroup
of T by construction). Let f^ be an automorphism of X induced by (p<y
(this automorphism is unique up to translations). Then E is stabilized
by /a ? since (po(<T) = a. Since for (po : N^/(v)^ -> N^/(v)K we have
$<, = - Id it follows that f^\E is of the form t ' -> t o t ' ~ 1 ( t ' , t ' o € T').
Thus fy has a fixed point xe£' which is isolated in E. Since (p^ = Id
it is clear that flev. Thus the group S generated by fy and v is
reductive and there exists a decomposition T^(JO = T^(JS') © ^F of
r,(JSO such that for each t e S the differential d^t stabilizes T^E) and
W.

Now y does not act trivially on W. Hence we can find an element
t e v such that fy : = t ofy satisfies

d^=-U and djl=ld.

By faithful linearization it is clear that x is an isolated fixed point of
/^ and that f^ = Id. Thus we have found a symmetry for x.

(3) Now we can prove the sufficiency of the condition in the
Theorem by induction. Assume that for each non-singular fan £ which
fulfills the condition in the Theorem the corresponding fan automorphism
induces symmetries for the 7-orbits of codimension smaller than 5.

Let cr = <^i, . . . , Vs) e £ and E : == orb (<r) be the corresponding
T-orbit of codimension s . Let Z)i ; = orb «yi» be a T-invariant divisor
containing E . Then (p^ induces a fan automorphism (p^ of the fan
£<^> belonging to Z>i.

By induction cp^ induces a symmetry in Z>i for x e E . Thus there
exists x e E c: X and an automorphism fy of X such that fa(x) == x and
dJ.\D,= - Id.
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Now the same arguments as in (2) show that we can find an
automorphism fy which is a symmetry in X for x e E . Thus the
sufficiency is proved by induction. D

DEFINITION. - A non-singular complete fan which fulfills the condition
in Theorem 3.7 mil be called a complex-symmetric fan.

Remark. - If X^ is a singular but normal complete complex-
symmetric torus embedding, then it is easy to see that £ has the
following property:

For each cone ae£ there exists a fan automorphism (p^ of order
two with (po(or) = a such that for the induced automorphism
(pa: A?R/(a)R -> ^R/(<J)R we have

<Pa = - Id .

However, it is not clear that (pj (a)R = Id.

As a first application we will classify all smooth two-dimensional
complex-symmetric torus embeddings.

THEOREM 3.8. - There are exactly four non-isomorphic smooth
complete complex-symmetric torus embeddings of dimension two :

1 ) P , x p , ;

2) the del Pezzo-surface, i.e. Pi x p^ blown up in two suitable fixed
points of the standard (C^-action on Pi x Pi;

3) Y: = Pi x Pi blown up in all four fixed points of the standard
(C^-action on Pi x P ^ ;

4) Y blown up in four suitable fixed points of the (C*Y-action on Y.

Proof. — Let £ be a two-dimensional complex-symmetric fan and
^ be the finite group generated by {(pJoeZ}. Then it is clear from
Theorem 3.7 that ^ acts transitively on the set of two-dimensional cones
in £ and with at most two orbits on the set of one-dimensional cones
([L2], Lemma 23).

If a = <i;> is a one-dimensional cone, then a is a face of two
maximal-dimensional cones <i;i,u> and (v^v) and the integer ^ defined
by t^i + FZ = (~'k).v is the self-intersection number of the divisor
orb«u» ([Oda], Proposition 6.7). Note that all vectors are primitive
and that all cones are smooth by assumption.
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Now let X^ be a minimal two-dimensional complex-symmetric torus
embedding, i.e. X^ cannot be blown down T-equivariantly onto a
manifold. Then X^ = Pi x Pi since minimal two-dimensional torus
embeddings are classified (e.g. [Oda], Theorem 8.2) and the fan of
PI x P^ is the only centrally symmetric one.

So we assume that X^ is not minimal. Let

Sk(D = {Vo, . . . , V k - i , V k = - V Q , ...,v.,k-i]

(the vectors ordered counterclockwise in (R2). We may assume that
VQ = ^i, t^i = ^2 ^d ^at orb «^)) has self-intersection number — 1.
The self-intersection number of orb «^i)) is denoted by ^. Since the
first coordinate of v^-i is strictly positive and

Vi + v^-i = - ^Vo o e^ v^k-i = - ̂ i,

it is clear that ^ < 0.

We claim that - 3 < X.

Indeed, if ^ -=fc — 1 all divisors with self-intersection number — 1
can be blown down equivariantly one after the other since blowing down
orb«u,» only affects the self-intersection number of orb«^+i» and
orb«Ui-i» ([Oda], p. 43 and Proposition 6.7). It follows from [Oda]
(p. 43) that the skeleton of the fan £ obtained in this way is

Sk(£) = {VQ,V^ . . .,^-2}

and that all self-intersection numbers are ^ + 2.

Now if ^ < — 3, the variety X^ is minimal and all self-intersection
numbers are negative. But such a variety does not exist ([Oda],
Theorem 8.2).

So we only have to consider the cases ^ = — 1 , ^ = — 2 and
K = — 3. For ^ = — 1 we have

Sk(I;) = {^1,^2. -^1+^2, -^i, -^ +^1-^2}-

For ^ = — 2 we have

Sk(S) = { ± ^ , ±e^±(2e,-e,),±(e,-e,)}.

For ^ = — 3 we have

Sk(I;) = {±^ , ±e,,±(3e,-e,),±(e,-e,),±(2e,-e,)}.
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In each case, by a direct application of Theorem 3.7, we can prove
thai S is a complex-symmetric fan ([L2], pp. 24-28). From [Oda] (p. 43)
it is easy to see that the fans defined above are exactly the fans of the
varieties in the Theorem. D

In order to classify all smooth complex-symmetric torus embeddings
we make use of the classification of Coxeter groups.

Recall that a finite subgroup ^ of the orthogonal group 0((R"),
which is generated by reflections at linear hyperplanes, is called a
Coxeter group ([G-B]).

For each reflection Se^ there are two unit vectors orthogonal to
the hyperplane stabilized pointwise by S . These are called the roots of
S , and the set of all roots is called the root system A of ^.

A base 71 of A is a set {y-i, .. .,rJ- of roots which is a basis of R"
such that each element of A can be written as a linear combination of
the r, with all coefficients either non-negative or non-positive ([G-B],
p. 37). The reflections corresponding to a fixed base n are called
fundamental reflections and are denoted by 5^. (r,e7r). The group ̂  is
generated by these reflections. A Coxeter group is called irreducible, if
its base cannot be written as union of two non-empty orthogonal
subsets ([G-B], p. 56). Equivalently, an irreducible Coxeter group cannot
be written as a direct product of proper subgroups which are Coxeter
groups.

By using the classification of positive definite Coxeter graphs
([G-B]) it is possible to classify all irreducible Coxeter groups ([G-B],
Theorem 5.12; [Cox]) and to determine their root systems explicitly up
to linear equivalence. We will make use of this explicit description. But
before we have to establish a link between complex-symmetric fans and
Coxeter groups.

THEOREM 3.9. — Let £ be a complex-symmetric fan and ^ be the
group generated by {(p<, o (-Id)|G= <y>; v e Sk(£)} ((p^ as in Theorem 3.7).
Then by choosing a suitable inner product ^ is a Coxeter group mth
root system

^-{^sesw)}-
Moreover, the group ^ is reducible, if and only if S is the product
S7 x 27 of lower-dimensional fans.
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Proof. - Since - Id = (p<o>, the group ^ is a subgroup of the
group generated by {(pcJaeS}, which is a finite group since £ is a
finite set.

Hence, by a suitable linear change of coordinates we may assume
that this group is a subgroup of the orthogonal group. Note that this
change of coordinates perhaps destroys the property that the vectors
ueSk(£) are (primitive) elements of N ^ Z\

Now for a one-dimensional cone CT = <i;> the mapping

(pa0(-ld)==:(^ is a reflection by Theorem 3.7 with roots ± -v- Thus
11^11

^ is a Coxeter group and it is clear that ^ does not act trivially on
any linear subspace of V\ = A^.

Now let ^ be reducible. Then A is the union of two non-empty
mutually orthogonal subspaces. Thus there exists a decomposition
V = V C V" of V such that A = (An V) u (An V " ) .

Therefore
Sk(£) = (Sk(£)nr) u (Sk(£)nr'),

and by Lemma 3.2 we have £ = 27 x ^ " .

Now assume that i; is reducible. By Lemma 3.2 there exist non-
trivial subspaces V and F" such that

V = V © r' and Sk (£) = (Sk(£)n V) u (Sk(I)n F").
Thus

A == (Anr) u (AnF") = : A' u A".

If we show that A' is orthogonal to A", it follows that ^ is reducible.

Let Hul l 6 2 1 ' and Ev be the ^Perplane stabilized pointwise by ^^.
Then ^(A') = A\ (p,(A-) = A- and (p,(F-) = F\ Since <p, is a
reflection it follows that V" c: £,. Therefore each element v e A' is
orthogonal to V" and thus to A\ Q

Remark. - If 2: is a complete fan defining a singular but normal
complex-symmetric torus embedding, it follows from the Remark after
Theorem 3.7 that the group ̂  generated by

{<Pal<7= <1;>6Z}
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is a Coxeter group with root system
A•{^"ssw)}•

However, it may happen that S is irreducible although ^ is reducible
(cf. Example 3.15).

We will now explain how the classification of Coxeter groups is
used to classify complex-symmetric torus embeddings. Let £ be a
complex-symmetric fan of dimension k which is not the product 5V x £"
of lower-dimensional fans. We associate an irreducible Coxeter group
of rank k to £ as in Theorem 3.9. If k ^ 3, then there is only a finite
number of non-isomorphic Coxeter groups of rank k, and we will show
that the root system of an irreducible Coxeter group of rank k ^ 3
cannot define a complex-symmetric fan.

This will be done as follows.

Let A be the root system of an irreducible Coxeter group of rank
k ^ 3. Then A can be described explicitly and in each case there exists
re A such that the stabilizer subgroup Stab^(^) is a Coxeter group of
smaller rank (either k — 1 or k — 2) .

If we construct the fan 2:<^> corresponding to orb «r» by projecting
the cones of St «r» orthogonally on (r)ii, then Stab,(^) acts on £<,>
as a group of orthogonal transformations. By induction we know that
the fan E<^> is the product of one- and two-dimensional fans. Since all
fan automorphisms of S can be chosen to be orthogonal it follows
that the irreducible factors of S^> are orthogonal to each other.

It is difficult to decide which vectors of A define cones in St «r».
Thus we consider the orthogonal projection & of all vectors of A on
(r)R . We then determine which subsets of A are stabilized by the group
Stab^(^). In this way we are able to list all possibilities for St«r».
In some cases the set & will not contain Stabr(^)-stable subsets which
define complex-symmetric fans of dimension k - 1. In some other cases
such subsets of S exist. Using the properties of complex-symmetric fans
we then determine the possibilities for St«r». In each case we will
obtain a contradiction.

If one looks at the classification of Coxeter groups of rank k ^ 3,
there are three infinite series ja^, SSk and ^ (fe>4) called classical
groups and some exceptional groups which are denoted by ^3, ^"4,
^4, <^6. ^7» ^8- Each case will be treated separately.
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The following Lemmas will be useful in order to restrict the possible
cases for A<r>.

LEMMA 3.10. — Let ^ be a Coxeter group of rank k ^ 4 with root
system A and r e A such that Stab^(^) is an irreducible Coxeter group
of rank k - 1. If £^> corresponds to a product Ai x • • • x A, of
irreducible root systems of rank smaller than three, then each A, has rank
one.

Proof. - Assume that Ai is two-dimensional. Let {v^v^} be a base
of Ai . Then Ui and v^ are not orthogonal. Since Stab^(^) is irreducible
of rank k - 1 and k ^ 4 there exists cp e Stab^(^) such that (p(i;i) ^ Ai.
Then it follows that ^(v^) i Ai and that (p(Ai) 1 Ai, since (p is orthogonal.

Moreover, we may assume that (p is a reflection. But then
dim(£\pn(Ai)R) ^ l,where E^ is the hyperplane stabilized pointwise by
(p. This contradicts (p((Ai)R) n (Ai)^ = {0}.

Therefore all factors A^ have rank one. D

With the same methods it can be shown :

LEMMA 3.11. — Let ^ be a Coxeter group of rank k ^ 5 with root
system^ and re A such that Stab^(^) contains an irreducible Coxeter
group of rank k — 2. If £^> corresponds to a product Ai x . . . x A,
of irreducible root systems of rank smaller than three, then each A, has
rank one. D

Now we will prove

THEOREM 3.12. - Let I. be a complex-symmetric fan of dimension
k ^ 2. Then £ can be written as a product

^ x ... x £ ^ x (^(^^fe),

where £;. is a two-dimensional complex-symmetric fan and So ls tn^ o^-
dimensional complex-symmetric fan.

Proof. — We proceed by induction on k. The case k == 2 is
Theorem 3.8. The different types of Coxeter groups will be treated
separately. Let ^ be an irreducible Coxeter group, A its root system,
7i a base, r e A chosen such that Stab^(^) is a Coxeter group and A
the orthogonal projection of A on (r)^.
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Case I : ^ = j^k'-

A = {±(^-^) | l^<^fe+l}c:( l , . . . , l )^ c= R^1;
7i = {r,:=e,^-^,|l<i<fe}([G-B], p. 71, p. 76);
r =^ -^ i ; Stab^)^^-2=<^,...,5^> ([L2], Lemma 47);
A = {±(^-^.) |3</<f<fe+l}

u^± J(^+^)-^ 3<^fe+l^ ([L2], Lemma 50).

Case la : k = 3 :

In this case we have

^ ± (e^-e,\ ± ^(e^e,)-e, , ± ^(e,-A = -j±(^-^),±[j(^+^)-^p |(^i+^)-^|L

Then the only Stab^(^)-stable subsets that define a complete fan are

A , = A or A ^ = Lrj(^+^)-Jb=3,4l,

since Sr exchanges ^3 and ^4.

But A 2 is not complex-symmetric since it has to be reducible by
induction and the generating vectors of Ag have to be orthogonal to
each other. Note that we always assume that all fan automorphisms
are orthogonal.

If we assume that Sk (£/,.>) = Ai, then

/I 1
, (6?i+6?2)-^3,-,<^i'' = {-^(e^e^-e^{e^e^-e^

and
1 \ \

a2: = \^(<el^e2)~e^e3~e^

are cones in £<^>.

Since -^(e^e^—ej is the projection of e^ — Cj or e^ — ej ([L2],

p. 56) an easy calculation shows that the cone <7i can only be obtained
as the projection of

TI : = <e^—e^ e^—e^ e^—e^>



COMPLEX-SYMMETRIC SPACES 409

(a cone of the form <e^-e^e^-e^> cannot exist in £!). Similarly,
CTa is obtained as the projection of

Tg : = <e^-ei, e<i-e^ e^-e^> .

By Theorem 3.7 and by [Oda] (p. 35) there exists an orthogonal fan
automorphism (p with

<P(^2-<?l)=^2-^l, (P(^2-^)=^2-^4, (P(^2-^)=^3-^4.

Now 1 = (e^-e^ e^-e^) = ((p(^-^i), <P(^2-^)) = 0.

Contradiction. So the root system of ^3 does not define a complex-
symmetric fan.

Ca56? Ib : k ^ 4 :
For fe ^ 5 the fan !<,> can only be the fan of (Pi)*"1 by Lemma 3.11.

For k = 4 the fan E<r> is either the fan of (IPi)3 or the fan of a
product of Pi with a two-dimensional complex-symmetric torus embedding
by induction.

In the last case A contains a vector v such that

<p(u) = ± v V(p e Stab,(^).

But it can easily be shown that such a vector does not exist ([L2],
Lemma 51).

In the other case & contains a vector v such that for all (p e Stab^(^)
either (p(i^) = ± u or (p(i;) is orthogonal to i^. But such a vector does
not exist, either ([L2], Lemma 52). Thus the root system of e^ does
not define a complex-symmetric fan.

Case II : ^ == ^k, k ^ 3:

A = { ± 6 ? J l ^ ^ f e } u { d = ^ ± ^ | l < / < f < f e } ;

TC = { r i : = ^ i , r , :=^-^-i |2<i^fe};
r = ^, Stab,(^) ^ ^,-1 = (^,, . . . , ̂ ,_,) ([L2], Prop. 45);
A = { ± ^ | l ^ f ^ f e - l } u {±^,±^. |1^7<i^fe-l}.

Case Ha : k = 3 :

In this case we have A = {±^1, ±e^, ±e^±e<^.

Since 5^ exchanges e^ and ^2 the only Stab^(^)-stable subsets of
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& defining a complex-symmetric fan are

AI = A and Az = {±^1, =b^}.

If Sk(5;<r>) corresponds to Ai, then <^i, ^i+^> and (e^e^e^ are
cones in 2^>. Then (€3, €1+^3, ^i+^> and <^, ^1+^2, ^2+^3> are
cones in E since ^ e S<r> can be obtained as the projection of ^,, ^ — ^3
and ^ + ^ (f=l,2). On the other hand, it follows that <^i, ^i+^> eS,
and it can be shown that <^i, €1+^2, ^i+^3> or <^i, ^ i+^» ^2+^3) are
cones in E. In the first case, by Theorem 3.7 and [Oda] (p. 35), there
exists an orthogonal map (p such that

(P«^3, ^i+6?2, ^l+^3» = <^1, ^1+^2, ^1+^3>

with (p|<^i+^2, ^i+^3> = Id and (p(^) = e^.
But this mapping is not orthogonal.
In the second case we can construct a similar counterexample.
If Sk(£<r>) corresponds to Ag, then <^i+^3, e^e^ ^> e £. By

Theorem 3.7 there exists an orthogonal map with one eigenvalue
- 1 such that (p|<e2+e3, ^i+^> = Id. But then it follows that

^(^3) = -(^i"1"^) "h ^ ^ 3 - But no multiple of the last vector is an

element of A.
So the root system of ^3 does not define a complex-symmetric fan.

Case lib : k ^ 4 :
By Lemma 3.10 and by induction the fan Z^> has to be the fan

of (Pi)*"1. The only subset of S which can define a complex-symmetric
fan is

AI = [±e^,±e^ . . . , ±0^-1} ([L2], Lemma 54, Lemma 55).

Therefore <^i, . . . ,^-i> e £<^> and

<^i+^, . . . ,^_i+^, ^>eS ([L2], Lemma 56).

Thus there exists an orthogonal fan automorphism (p with one eigenvalue
- 1 such that (p(^+^) = Ci^-Ck, i = 1, . . . , k - 1. It follows that

2 fe — 2 '
(P(^) = ̂ i+ • • • +^-i) + -y-^ ([L2]' Lemma 57).

Therefore cp does not stabilize A and it follows that the root system
of ^ does not define a complex-symmetric fan.
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Case H I : ^ == ^,, k > 4 :

A = {±^=^,|1</<W;

7c = {ri:=^i+^ r,=^-^-i|2^i<fe};

^ = ̂ -i+^;Stab^)^^-2 x ^1= (S^...,S^,^Sr)

(^3^3, ̂ 2^^ix ̂ i) ([L2], p. 46);

A = ^u^u53=^±j(^-^-i)±^|l^«fe-2^

u{±(^-^-i)}u{±^±^|l^j<f<fe-2} ([L2], Lemma 59).

Case Ilia : k = 4 :
By induction S<^> is a reducible fan. It follows that the only

Stabr(^)-stable subset of A that can define a complex-symmetric fan is
{±(e^e,),±(e,-e,), ±(e,-e,)} ([L2], p. 55).

Therefore <^ i+^2» ^ i~^2? ^3 — ^4) e ^<r> can only be obtained as the
orthogonal projection of

T : = <^i+^, ^1-^2, e^-e^ ^+^4> ([L2], p. 55).

Now T contains <^i + ̂ , but not as a face. This contradicts the
definition of a complex-symmetric fan.

Thus the root system of ^4 does not define a complex-symmetric
fan.

Case HIb : k ^ 5 :
By Lemma 3.11 and by induction E<r> is the fan of (Pi)^1. But

there is no subset of A that defines the fan of (Pi)*"1 ([L2], Lemma 60).
Note that Z<r> has to contain an orthogonal basis of R*"1.

Thus the root system of ^ does not define a complex-symmetric
fan.

Case IV : ^ = ^3:

Let a = cos- and P = (4a)~1. We have 4a2 = 2a + 1. Then

A={±^=l,2,3}u{P(±(2a+l),±l,±2a)}
u {P(±2a, ± (2a+1), ± 1)} u {P(± 1, ±2a, ± (2a+ 1))};

K = {ri:=P(2a+U,-2a),r2:=P(-2a-l,l,2a),r3:
==P(2a,-2a-l,l)};

r = P(l,2a,2a+l);Stab,(^) ^ ̂  x ̂  ^ (^,^).
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The set {r,ri,r3} is an orthogonal basis of R3 and we obtain A as
orthogonal projection on (r^r^. In these coordinates we have
S={±(0,l) ,±(l ,0)}u{±(a, l /2) ,±(-a, l /2)}

u{±(l/2,P),±(-l/2,p)}
u {±(P,a), ±(-P,a)} = : S, u S, u S, u S,.

The sets Si are Stab^(G)-stable subsets of A. Note that for v 6 5',,
w e 5',, we have ||u|| = ||w|| o i =7.

Now 5'i is the only possibility for a complex-symmetric fan with
four vectors since such a fan has to contain an orthogonal basis of
(^^R- Note that by assumption all induced fan automorphisms are
orthogonal.

The set A does not contain a complex-symmetric fan with six vectors
since all vectors of such a subset have to be of equal length. Similarly,
A does not contain a complex-symmetric fan with eight vectors since

there do not exist two vectors v^,v^e?i with ^ (^1,^2) = j*

Finally, A does not contain a complex-symmetric fan with twelve
vectors since in A there do not exist more than four vectors of equal
length.

So we only have to analyse the case Sk(E<^)=5'i . But then
<7 = < r i , r 3 , r > e £ . Since the generating vectors of a are orthogonal
and the group generated by all fan automorphisms acts transitively on
the set of maximal-dimensional cones ([L2], Lemma 20; Theorem 3.7
above) the fan £ has to contain the cone T = <^i, e^ e^ since ± ^
are the only vectors in A orthogonal to e^. Now T contains <r>, but
not as a face. Contradiction.

Thus the root system of ^3 does not define a complex-symmetric
fan.

Case V : ^ = ^4:

In this case we find r e A such that Stab,(^) ^ ^3 ([G-B], p. 80).
Then by Lemma 3.10 and by induction the fan £<r>is the fan of (Pi)3.
The group of all fan automorphisms of S<^> has the order 23•3 ! = 48
([L2], Lemma 62). Moreover, we have a faithful representation of
Stab^(^) ^ 0^3 as a subgroup of the group of fan automorphisms of
S<r>. This is impossible since [J^l = 120 ([G-B], p. 80).

Thus the root system of ^4 does not define a complex-symmetric
fan.
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Case VI: ^ = ^4:
A:^{±ei\l^i^4}u{±ei±ej\l^j<i^4}u^±e,±e,±e,±e^ ;

7C:=^i := --.0?i+6?2+6?3+^),r2 ' ' = e ^ r 3 : = 6?2-^,r4 :=^3-^;

r=^; Stab,(^) ^ ^3 = (S^,S^);

A={±ej l<^3}u{±^±^ , | l^< i<3}u^(±^±^±^)} '

Since Stab^(^) is irreducible the fan £<^> is the fan of (Pi)3 by
Lemma 3.10 and by induction. The only possibility for Sk (S<^>) is
Sk(£<,>) == {±e,,±e,,±e,} ([L2], Lemma 64). Thus <^i, e^ ^> e S<,> and
<^i+^4, ^2+^49 ^3" l~^45 ^4) e S ([L2], Lemma 65). By Theorem 3.7 there
exists an orthogonal mapping (p of order two with double eigenvalue
— 1 such that

(P |<6?i+<?4, (?2+^4> = Id.

It follows that (p(^i) = ^ (ei— 2^2+2^4) ([L2], Lemma 66). Therefore (p
does not stabilize A.

Thus the root system of ^"4 does not define a complex-symmetric
fan.

Case VII : ^ = ^, ^ = ^7;.
In the first case the root system A contains re A such that

Stab^(^) ^ ^5 ([G-B], p. 80). Thus Stab,(^) is irreducible and Z<,> is
the fan of (Pi)5 by Lemma 3.10 and by induction. But an easy
calculation shows that there is no subset of the orthogonal
projection A of A on <r>R defining the fan of (Pi)5 which is stabilized
by Stab^(^) ([L2], p. 65). Note that 2^> has to contain an orthogonal
basis of IR 5 .

In the second case A contains re A such that Stab^(^) ^ ^g
([G-B], p. 80). Thus £<r> is the fan of (Pi)6 and the same argument as
in the first case shows that this is impossible. Thus the root systems
of ^g ^d ^7 do not define a complex-symmetric fan.

Case VIII : ^ = ^s:

In this case we find re A such that Stab^(^) ^ ^7 ([G-B], p. 80).
Thus by Lemma 3.10 and by induction the fan £<^ is the fan of (Pi)7.
Now the group of all fan automorphisms of £<^ has the order 27 • 7 !.
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Moreover, we have a faithful representation of Stabr(^) as a subgroup
of this group. This is impossible since |<^| > 2 7 - ? ! ([G-B], p. 80).

Thus the root system of <^e does not define a complex-symmetric
fan.

This case completes the proof of Theorem 3.12. D

Remark. - Obviously the most difficult cases are the cases k = 3 ,4 .
The case k = 3 can be treated using triangulations of spheres that are
obtained as the intersection of a sphere with a three-dimensional fan
2: ([L2], §3.1; [Oda]).

From Theorem 3.6 and Theorem 3.12 we obtain

THEOREM 3.13. — Let X be a smooth complex-symmetric torus
embedding of dimension k. Then X can be written as a product

X^ x . . . x ̂  x (^(^^fc),

where Xi. is a two-dimensional complex-symmetric torus embedding. D

COROLLARY 3.14. — Each smooth complex-symmetric torus embedding
is (T-equivariantly) projective algebraic and can equivariantly be blown
down to (Pi)'(fe=dimD. D

We finish by giving an Example which shows the difficulties that
occur if X is only assumed to be a normal complex-symmetric torus
embedding.

Example 3.15. — Consider the two-dimensional complete fan £ with

Sk(2:) = {^i+6?2, -6?i+^, -e^-e^ e^-e^}.

This corresponds to a complete torus embedding X^ with four singular
points belonging to the maximal-dimensional cones, and it is not difficult
to see that As is complex-symmetric ([L2], p. 66). By the Remark
following Theorem 3.9 the set Sk(£) also corresponds to the root system
of a Coxeter group ̂ . In this case ^ = ^i x j^i. But ^ is reducible
while As cannot be written as a product of one-dimensional torus
embeddings.

Thus irreducible torus embeddings do not correspond to irreducible
Coxeter groups in the singular case.
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Moreover, there are at least two non-isomorphic varieties which
have j^i x j^i as corresponding Coxeter group. In the smooth case it
follows from our classification that there is at most one variety
corresponding to a fixed Coxeter group.

So in the singular case a classification seems to be much more
difficult. This classification will be treated in a forthcoming paper.
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