Nous montrons que l’opérateur maximal associé à la famille de rectangles en dont un des côtés est parallèle à pour quelques est borné sur , . Nous appliquons ce théorème pour obtenir une extension du théorème de multiplicateurs de Marcinkiewicz.
We show that the maximal operator associated to the family of rectangles in one of whose sides is parallel to for some j,k is bounded on , . We give an application of this theorem to obtain an extension of the Marcinkiewicz multiplier theorem.
@article{AIF_1988__38_1_157_0, author = {Carbery, Anthony}, title = {Differentiation in lacunary directions and an extension of the {Marcinkiewicz} multiplier theorem}, journal = {Annales de l'Institut Fourier}, pages = {157--168}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {38}, number = {1}, year = {1988}, doi = {10.5802/aif.1127}, mrnumber = {89h:42026}, zbl = {0607.42009}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1127/} }
TY - JOUR AU - Carbery, Anthony TI - Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem JO - Annales de l'Institut Fourier PY - 1988 SP - 157 EP - 168 VL - 38 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1127/ DO - 10.5802/aif.1127 LA - en ID - AIF_1988__38_1_157_0 ER -
%0 Journal Article %A Carbery, Anthony %T Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem %J Annales de l'Institut Fourier %D 1988 %P 157-168 %V 38 %N 1 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.1127/ %R 10.5802/aif.1127 %G en %F AIF_1988__38_1_157_0
Carbery, Anthony. Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem. Annales de l'Institut Fourier, Tome 38 (1988) no. 1, pp. 157-168. doi : 10.5802/aif.1127. http://www.numdam.org/articles/10.5802/aif.1127/
[1] An almost-orthogonality principle with applications to maximal functions associated to convex bodies, B.A.M.S., 14-2 (1986), 269-273. | MR | Zbl
. —[2] Variants of the Calderón-Zygmund theory for Lp-spaces, Revista Matemática Ibero Americana, 2-4 (1986), 381-396. | MR | Zbl
. —[3] Personal communication.
. —[4] Maximal operators related to the Radon transform and the Calderón-Zygmund method of rotations, Duke Math. J., 53-1 (1986), 189-209. | MR | Zbl
, AND .[5] Differentiation in lacunary directions, P.N.A.S. (USA), 75-3 (1978), 1060-1062. | MR | Zbl
, AND . —[6] Singular integrals and differentiability properties of functions, Princeton University Press, Princeton N.J., 1970. | MR | Zbl
. —Cité par Sources :