Density questions in the classical theory of moments
Annales de l'Institut Fourier, Tome 31 (1981) no. 3, pp. 99-114.

Soit μ une mesure de Radon positive sur la droite dont tous les moments existent. Nous démontrons que l’ensemble P des polynômes n’est pas dense dans Lp(R,μ) pour p>2, si μ est indéterminée. Si μ est déterminée P est dense dans Lp(R,μ) pour 1p2, mais non nécessairement pour p>2. Ensuite, nous étudions l’ensemble convexe et compact des mesures de Radon positives admettant les mêmes moments que μ.

Let μ be a positive Radon measure on the real line having moments of all orders. We prove that the set P of polynomials is note dense in Lp(R,μ) for any p>2, if μ is indeterminate. If μ is determinate, then P is dense in Lp(R,μ) for 1p2, but not necessarily for p>2. The compact convex set of positive Radon measures with same moments as μ is studied in some details.

@article{AIF_1981__31_3_99_0,
     author = {Berg, Christian and Christensen, J. P. Reus},
     title = {Density questions in the classical theory of moments},
     journal = {Annales de l'Institut Fourier},
     pages = {99--114},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     number = {3},
     year = {1981},
     doi = {10.5802/aif.840},
     mrnumber = {84i:44006},
     zbl = {0437.42007},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.840/}
}
TY  - JOUR
AU  - Berg, Christian
AU  - Christensen, J. P. Reus
TI  - Density questions in the classical theory of moments
JO  - Annales de l'Institut Fourier
PY  - 1981
SP  - 99
EP  - 114
VL  - 31
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.840/
DO  - 10.5802/aif.840
LA  - en
ID  - AIF_1981__31_3_99_0
ER  - 
%0 Journal Article
%A Berg, Christian
%A Christensen, J. P. Reus
%T Density questions in the classical theory of moments
%J Annales de l'Institut Fourier
%D 1981
%P 99-114
%V 31
%N 3
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.840/
%R 10.5802/aif.840
%G en
%F AIF_1981__31_3_99_0
Berg, Christian; Christensen, J. P. Reus. Density questions in the classical theory of moments. Annales de l'Institut Fourier, Tome 31 (1981) no. 3, pp. 99-114. doi : 10.5802/aif.840. https://www.numdam.org/articles/10.5802/aif.840/

[1] N.I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965. | Zbl

[2] H. Bauer, Wahrscheinlichkeitstheorie und Grundzüge der Masstheorie, De Gruyter, Berlin, 1978. | Zbl

[3] G. Freud, Orthogonal polynomials, Pergamon Press, Oxford, 1971. | Zbl

[4] E. Hewitt, Remark on orthonormal sets in L2 (a, b), Amer. Math. Monthly, 61 (1954), 249-250. | MR | Zbl

[5] M.A. Naimark, Extremal spectral functions of a symmetric operator, Izv. Akad. Nauk. SSSR, ser. matem., 11 ; Dokl. Akad. Nauk. SSSR, 54 (1946), 7-9. | MR | Zbl

[6] R.R. Phelps, Lectures on Choquet's Theorem, Van Nostrand, New York, 1966. | MR | Zbl

[7] M. Riesz, Sur le problème des moments et le théorème de Parseval correspondant, Acta Litt. Ac. Sci., Szeged., 1 (1923), 209-225. | JFM

[8] J.A. Shohat and J.D. Tamarkin, The problem of moments, AMS, New York, 1943. | MR | Zbl

[9] E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton University Press, 1971. | MR | Zbl

  • Alghamdi, Wael; Calmon, Flavio P. Measuring Information From Moments, IEEE Transactions on Information Theory, Volume 70 (2024) no. 2, p. 763 | DOI:10.1109/tit.2022.3202492
  • Novi Inverardi, Pier Luigi; Tagliani, Aldo; Milev, Mariyan Indeterminate Hamburger moment problem: Entropy convergence, Statistics Probability Letters, Volume 212 (2024), p. 110155 | DOI:10.1016/j.spl.2024.110155
  • Novi Inverardi, Pier Luigi; Tagliani, Aldo Indeterminate Stieltjes Moment Problem: Entropy Convergence, Symmetry, Volume 16 (2024) no. 3, p. 313 | DOI:10.3390/sym16030313
  • Novi Inverardi, Pier Luigi; Tagliani, Aldo; Stoyanov, Jordan M. The Problem of Moments: A Bunch of Classical Results with Some Novelties, Symmetry, Volume 15 (2023) no. 9, p. 1743 | DOI:10.3390/sym15091743
  • Bakry, Dominique; Orevkov, Stepan; Zani, Marguerite Orthogonal polynomials and diffusion operators, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 30 (2022) no. 5, p. 985 | DOI:10.5802/afst.1693
  • López-García, Marcos Operators on the vanishing moments subspace and Stieltjes classes for M-indeterminate probability distributions, Arab Journal of Mathematical Sciences, Volume 28 (2022) no. 2, p. 229 | DOI:10.1108/ajms-04-2021-0083
  • Berg, Christian; Szwarc, Ryszard Self-adjoint operators associated with Hankel moment matrices, Journal of Functional Analysis, Volume 283 (2022) no. 10, p. 109674 | DOI:10.1016/j.jfa.2022.109674
  • Schmüdgen, Konrad The Stieltjes condition and multidimensional K-moment problems, Archiv der Mathematik, Volume 117 (2021) no. 2, p. 179 | DOI:10.1007/s00013-021-01599-9
  • Ismail, Mourad E. H. Solutions of the Al-Salam–Chihara and allied moment problems, Analysis and Applications, Volume 18 (2020) no. 02, p. 185 | DOI:10.1142/s0219530519500088
  • Ismail, Mourad E. H.; Assche, Walter Van Encyclopedia of Special Functions: The Askey-Bateman Project, 2020 | DOI:10.1017/9780511979156
  • Sokal, Alan D. The Euler and Springer numbers as moment sequences, Expositiones Mathematicae, Volume 38 (2020) no. 1, p. 1 | DOI:10.1016/j.exmath.2018.08.001
  • Gonon, Lukas; Ortega, Juan-Pablo Reservoir Computing Universality With Stochastic Inputs, IEEE Transactions on Neural Networks and Learning Systems, Volume 31 (2020) no. 1, p. 100 | DOI:10.1109/tnnls.2019.2899649
  • Berg, Christian; Szwarc, Ryszard Closable Hankel Operators and Moment Problems, Integral Equations and Operator Theory, Volume 92 (2020) no. 1 | DOI:10.1007/s00020-020-2561-z
  • Golinskii, Leonid Extreme points in the isometric embedding problem for model spaces, Journal d'Analyse Mathématique, Volume 141 (2020) no. 2, p. 441 | DOI:10.1007/s11854-020-0105-8
  • Świderski, Grzegorz; Trojan, Bartosz Asymptotics of orthogonal polynomials with slowly oscillating recurrence coefficients, Journal of Functional Analysis, Volume 278 (2020) no. 3, p. 108326 | DOI:10.1016/j.jfa.2019.108326
  • Bommier-Hato, H. Algebraic properties of Toeplitz operators on generalized Fock spaces on Cd, Journal of Mathematical Analysis and Applications, Volume 481 (2020) no. 1, p. 123449 | DOI:10.1016/j.jmaa.2019.123449
  • Wróbel, Błażej Dimension-free Lp estimates for vectors of Riesz transforms associated with orthogonal expansions, Analysis PDE, Volume 11 (2018) no. 3, p. 745 | DOI:10.2140/apde.2018.11.745
  • Dhaouadi, Lazhar On q-Bessel Fourier analysis method for classical moment problem, Bollettino dell'Unione Matematica Italiana, Volume 11 (2018) no. 2, p. 163 | DOI:10.1007/s40574-016-0115-8
  • Afendras, Georgios; Balakrishnan, Narayanaswamy; Papadatos, Nickos Orthogonal polynomials in the cumulative Ord family and its application to variance bounds, Statistics, Volume 52 (2018) no. 2, p. 364 | DOI:10.1080/02331888.2017.1406940
  • Ozen, H. Cagan; Bal, Guillaume A dynamical polynomial chaos approach for long-time evolution of SPDEs, Journal of Computational Physics, Volume 343 (2017), p. 300 | DOI:10.1016/j.jcp.2017.04.054
  • Lin, Gwo Dong Recent developments on the moment problem, Journal of Statistical Distributions and Applications, Volume 4 (2017) no. 1 | DOI:10.1186/s40488-017-0059-2
  • Yang, Xiangdong A theorem of Malliavin applied to the uniqueness of probabilistic moments, Journal of Statistical Planning and Inference, Volume 184 (2017), p. 18 | DOI:10.1016/j.jspi.2016.11.001
  • Schmüdgen, Konrad The Indeterminate Hamburger Moment Problem, The Moment Problem, Volume 277 (2017), p. 145 | DOI:10.1007/978-3-319-64546-9_7
  • Schmüdgen, Konrad The Multidimensional Moment Problem: Determinacy, The Moment Problem, Volume 277 (2017), p. 357 | DOI:10.1007/978-3-319-64546-9_14
  • Schmüdgen, Konrad One-Dimensional Moment Problems: Determinacy, The Moment Problem, Volume 277 (2017), p. 79 | DOI:10.1007/978-3-319-64546-9_4
  • Štampach, F.; Šťovíček, P. The Nevanlinna parametrization forq-Lommel polynomials in the indeterminate case, Journal of Approximation Theory, Volume 201 (2016), p. 48 | DOI:10.1016/j.jat.2015.09.002
  • Ozen, H. Cagan; Bal, Guillaume Dynamical Polynomial Chaos Expansions and Long Time Evolution of Differential Equations with Random Forcing, SIAM/ASA Journal on Uncertainty Quantification, Volume 4 (2016) no. 1, p. 609 | DOI:10.1137/15m1019167
  • Infusino, Maria Quasi-analyticity and Determinacy of the Full Moment Problem from Finite to Infinite Dimensions, Stochastic and Infinite Dimensional Analysis (2016), p. 161 | DOI:10.1007/978-3-319-07245-6_9
  • Gatto, A. Eduardo; Pineda, Ebner; Urbina, Wilfredo O. Riesz potentials, Bessel potentials and fractional derivatives on Triebel–Lizorkin spaces for the Gaussian measure, Journal of Mathematical Analysis and Applications, Volume 422 (2015) no. 2, p. 798 | DOI:10.1016/j.jmaa.2014.08.022
  • Tan, Matthias Hwai Yong Sequential Bayesian Polynomial Chaos Model Selection for Estimation of Sensitivity Indices, SIAM/ASA Journal on Uncertainty Quantification, Volume 3 (2015) no. 1, p. 146 | DOI:10.1137/130931175
  • Afendras, G.; Papadatos, N. Strengthened Chernoff-type variance bounds, Bernoulli, Volume 20 (2014) no. 1 | DOI:10.3150/12-bej484
  • Dai, Dan; Ismail, Mourad E. H.; Wang, Xiang-Sheng Plancherel–Rotach Asymptotic Expansion for Some Polynomials from Indeterminate Moment Problems, Constructive Approximation, Volume 40 (2014) no. 1, p. 61 | DOI:10.1007/s00365-013-9215-1
  • Kleiber, Christian On moment indeterminacy of the Benini income distribution, Statistical Papers, Volume 54 (2013) no. 4, p. 1121 | DOI:10.1007/s00362-013-0535-9
  • Stoyanov, Jordan Inference Problems Involving Moment Determinacy of Distributions, Communications in Statistics - Theory and Methods, Volume 41 (2012) no. 16-17, p. 2864 | DOI:10.1080/03610926.2011.605237
  • Ernst, Oliver G.; Mugler, Antje; Starkloff, Hans-Jörg; Ullmann, Elisabeth On the convergence of generalized polynomial chaos expansions, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 46 (2012) no. 2, p. 317 | DOI:10.1051/m2an/2011045
  • Berschneider, Georg; Sasvári, Zoltán On a Theorem of Karhunen and Related Moment Problems and Quadrature Formulae, Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations (2012), p. 173 | DOI:10.1007/978-3-0348-0297-0_10
  • Afendras, G.; Papadatos, N.; Papathanasiou, V. An extended Stein-type covariance identity for the Pearson family with applications to lower variance bounds, Bernoulli, Volume 17 (2011) no. 2 | DOI:10.3150/10-bej282
  • Berg, Christian; Szwarc, Ryszard The Smallest Eigenvalue of Hankel Matrices, Constructive Approximation, Volume 34 (2011) no. 1, p. 107 | DOI:10.1007/s00365-010-9109-4
  • Berg, Christian; Christiansen, Jacob Stordal A question by T. S. Chihara about shell polynomials and indeterminate moment problems, Journal of Approximation Theory, Volume 163 (2011) no. 10, p. 1449 | DOI:10.1016/j.jat.2011.05.002
  • Balderrama, Cristina; Graczyk, Piotr; Urbina, Wilfredo Semigroups associated to generalized polynomials and some classical formulas, Journal de Mathématiques Pures et Appliquées, Volume 92 (2009) no. 4, p. 375 | DOI:10.1016/j.matpur.2009.05.006
  • Pineda, Ebner; Urbina, Wilfredo Some results on Gaussian Besov–Lipschitz spaces and Gaussian Triebel–Lizorkin spaces, Journal of Approximation Theory, Volume 161 (2009) no. 2, p. 529 | DOI:10.1016/j.jat.2008.11.010
  • Bakan, Andrew; Ruscheweyh, Stephan Majorization of regular measures and weights with finite and positive critical exponent, Journal of Mathematical Analysis and Applications, Volume 339 (2008) no. 1, p. 197 | DOI:10.1016/j.jmaa.2007.06.041
  • Bisgaard, Torben Maack; Sasvári, Zoltán When does imply independence?, Statistics Probability Letters, Volume 76 (2006) no. 11, p. 1111 | DOI:10.1016/j.spl.2005.12.008
  • Stoyanov, Jordan; Tolmatz, Leonid Method for constructing Stieltjes classes for M-indeterminate probability distributions, Applied Mathematics and Computation, Volume 165 (2005) no. 3, p. 669 | DOI:10.1016/j.amc.2004.04.035
  • Balderrama, Cristina; Graczyk, Piotr; Urbina, Wilfredo O. A formula for polynomials with Hermitian matrix argument, Bulletin des Sciences Mathématiques, Volume 129 (2005) no. 6, p. 486 | DOI:10.1016/j.bulsci.2005.01.002
  • Ostrovska, Sofiya; Stoyanov, Jordan Stieltjes classes for M-indeterminate powers of inverse Gaussian distributions, Statistics Probability Letters, Volume 71 (2005) no. 2, p. 165 | DOI:10.1016/j.spl.2004.10.024
  • Atakishiyev, N. M.; Klimyk, A. U. Jacobi Matrix Pair and Dual Alternative q-Charlier Polynomials, Ukrainian Mathematical Journal, Volume 57 (2005) no. 5, p. 728 | DOI:10.1007/s11253-005-0223-6
  • Stoyanov, Jordan Stieltjes classes for moment-indeterminate probability distributions, Journal of Applied Probability, Volume 41 (2004) no. A, p. 281 | DOI:10.1239/jap/1082552205
  • Atakishiyev, N.M.; Klimyk, A.U. On q-orthogonal polynomials, dual to little and big q-Jacobi polynomials, Journal of Mathematical Analysis and Applications, Volume 294 (2004) no. 1, p. 246 | DOI:10.1016/j.jmaa.2004.02.034
  • Berg, Christian Correction to a paper by A. G. Pakes, Journal of the Australian Mathematical Society, Volume 76 (2004) no. 1, p. 67 | DOI:10.1017/s1446788700008703
  • TIERZ, M. SOFT MATRIX MODELS AND CHERN–SIMONS PARTITION FUNCTIONS, Modern Physics Letters A, Volume 19 (2004) no. 18, p. 1365 | DOI:10.1142/s0217732304014100
  • Stoyanov, Jordan; Tolmatz, Leonid New Stieltjes classes involving generalized gamma distributions, Statistics Probability Letters, Volume 69 (2004) no. 2, p. 213 | DOI:10.1016/j.spl.2004.06.032
  • de Jeu, Marcel Determinate multidimensional measures, the extended Carleman theorem and quasi-analytic weights, The Annals of Probability, Volume 31 (2003) no. 3 | DOI:10.1214/aop/1055425776
  • Dvurečenskij, Anatolij; Lahti, Pekka; Ylinen, Kari The uniqueness question in the multidimensional moment problem with applications to phase space observables, Reports on Mathematical Physics, Volume 50 (2002) no. 1, p. 55 | DOI:10.1016/s0034-4877(02)80044-1
  • Кувшинов, Максим Юрьевич; Kuvshinov, Maxim Yurievich O V-экстремальных решениях проблемы моментов, Математические заметки, Volume 72 (2002) no. 3, p. 396 | DOI:10.4213/mzm431
  • Ismail, Mourad E.H.; Valent, Galliano; Yoon, Gang J. Some Orthogonal Polynomials Related to Elliptic Functions, Journal of Approximation Theory, Volume 112 (2001) no. 2, p. 251 | DOI:10.1006/jath.2001.3593
  • Gabardo, Jean-Pierre Truncated Trigonometric Moment Problems and Determinate Measures, Journal of Mathematical Analysis and Applications, Volume 239 (1999) no. 2, p. 349 | DOI:10.1006/jmaa.1999.6567
  • Pedersen, Henrik L. On Krein's Theorem for Indeterminacy of the Classical Moment Problem, Journal of Approximation Theory, Volume 95 (1998) no. 1, p. 90 | DOI:10.1006/jath.1998.3188
  • Berg, Christian On some indeterminate moment problems for measures on a geometric progression, Journal of Computational and Applied Mathematics, Volume 99 (1998) no. 1-2, p. 67 | DOI:10.1016/s0377-0427(98)00146-0
  • Ismail, Mourad E.H; Rahman, Mizan Theq-Laguerre Polynomials and Related Moment Problems, Journal of Mathematical Analysis and Applications, Volume 218 (1998) no. 1, p. 155 | DOI:10.1006/jmaa.1997.5771
  • Duran, Antonio J.; Lopez-Rodriguez, Pedro The LpSpace of a Positive Definite Matrix of Measures and Density of Matrix Polynomials inL1, Journal of Approximation Theory, Volume 90 (1997) no. 2, p. 299 | DOI:10.1006/jath.1996.3073
  • Riera, Mario Pérez; Varona Malumbres, Juan L. On completeness of orthogonal systems and Dirac deltas, Journal of Computational and Applied Mathematics, Volume 58 (1995) no. 2, p. 225 | DOI:10.1016/0377-0427(93)e0272-n
  • Berg, Christian Indeterminate moment problems and the theory of entire functions, Journal of Computational and Applied Mathematics, Volume 65 (1995) no. 1-3, p. 27 | DOI:10.1016/0377-0427(95)00099-2
  • Gabardo, Jean-Pierre A maximum entropy approach to the classical moment problem, Journal of Functional Analysis, Volume 106 (1992) no. 1, p. 80 | DOI:10.1016/0022-1236(92)90064-p
  • Berg, Christian; Thill, Marco Rotation invariant moment problems, Acta Mathematica, Volume 167 (1991) no. 0, p. 207 | DOI:10.1007/bf02392450
  • Schmüdgen, Konrad On determinacy notions for the two dimensional moment problem, Arkiv för Matematik, Volume 29 (1991) no. 1-2, p. 277 | DOI:10.1007/bf02384342
  • Friedrich, Jürgen Operator Moment Problems, Mathematische Nachrichten, Volume 151 (1991) no. 1, p. 273 | DOI:10.1002/mana.19911510117
  • Schmüdgen, Konrad On a generalization of the classical moment problem, Journal of Mathematical Analysis and Applications, Volume 125 (1987) no. 2, p. 461 | DOI:10.1016/0022-247x(87)90101-6
  • Kowalski, M. A. Representations of inner products in the space of polynomials, Acta Mathematica Hungarica, Volume 46 (1985) no. 1-2, p. 101 | DOI:10.1007/bf01961012

Cité par 69 documents. Sources : Crossref