Transitive riemannian isometry groups with nilpotent radicals
Annales de l'Institut Fourier, Tome 31 (1981) no. 2, pp. 193-204.

Étant donné un groupe de Lie connexe G, dont le radical est nilpotent et qui opère transitivement par isométries sur un espace homogène riemannien M, on décrit la structure du plus grand groupe connexe A des isométries de M et l’inclusion de G dans A. En conséquence, on obtient une condition suffisante pour que G soit normal dans A. Dans le cas spécial d’une action simplement transitive de G sur M, on construit un sous-groupe G normal dans A, transitif sur M et ayant la même dimension que G, et on donne une condition suffisante pour que G soit localement isomorphe à G.

Given that a connected Lie group G with nilpotent radical acts transitively by isometries on a connected Riemannian manifold M, the structure of the full connected isometry group A of M and the imbedding of G in A are described. In particular, if G equals its derived subgroup and its Levi factors are of noncompact type, then G is normal in A. In the special case of a simply transitive action of G on M, a transitive normal subgroup G of A is constructed with dimG =dimG and a sufficient condition is given for local isomorphism of G and G.

@article{AIF_1981__31_2_193_0,
     author = {Gordon, C.},
     title = {Transitive riemannian isometry groups with nilpotent radicals},
     journal = {Annales de l'Institut Fourier},
     pages = {193--204},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     number = {2},
     year = {1981},
     doi = {10.5802/aif.835},
     mrnumber = {82i:53040},
     zbl = {0441.53034},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.835/}
}
TY  - JOUR
AU  - Gordon, C.
TI  - Transitive riemannian isometry groups with nilpotent radicals
JO  - Annales de l'Institut Fourier
PY  - 1981
SP  - 193
EP  - 204
VL  - 31
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.835/
DO  - 10.5802/aif.835
LA  - en
ID  - AIF_1981__31_2_193_0
ER  - 
%0 Journal Article
%A Gordon, C.
%T Transitive riemannian isometry groups with nilpotent radicals
%J Annales de l'Institut Fourier
%D 1981
%P 193-204
%V 31
%N 2
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.835/
%R 10.5802/aif.835
%G en
%F AIF_1981__31_2_193_0
Gordon, C. Transitive riemannian isometry groups with nilpotent radicals. Annales de l'Institut Fourier, Tome 31 (1981) no. 2, pp. 193-204. doi : 10.5802/aif.835. http://www.numdam.org/articles/10.5802/aif.835/

[1] R. Azencott and E. N. Wilson, Homogeneous manifolds with negative curvature, Part I, Trans. Amer. Math. Soc., 215 (1976), 323-362. | MR | Zbl

[2] R. Azencott and E. N. Wilson, Homogeneous manifolds with negative curvature, Part II, Mem. Amer. Math. Soc., 8 (1976). | MR | Zbl

[3] C. Gordon, Riemannian isometry groups containing transitive reductive subgroups, Math. Ann., 248 (1980), 185-192. | MR | Zbl

[4] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978. | Zbl

[5] N. Jacobson, Lie algebras, Wiley Interscience, New York, 1962. | Zbl

[6] A. L. Oniščik, Inclusion relations among transitive compact transformation groups, Amer. Math. Soc. Transl., 50 (1966), 5-58. | Zbl

[7] H. Ozeki, On a transitive transformation group of a compact group manifold, Osaka J. Math., 14 (1977), 519-531. | MR | Zbl

[8] E. N. Wilson, Isometry groups on homogeneous nilmanifolds, to appear in Geometriae Dedicata. | Zbl

Cité par Sources :