On donne une description algébrique de l’ensemble des classes d’isomorphisme d’espaces symétriques affines connexes, simplement connexes et projectivement plats. On en déduit une classification des espaces symétriques affines connexes et projectivement plats et on détermine tous les espaces symétriques affines connexes admettant une transformation projective non affine.
We give an algebraic description for the set of isomorphism classes of connected, simply connected, projectively flat, affine symmetric spaces. A classification of connected projectively flat affine symmetric spaces id deduced. Moreover, we determine all connected affine symmetric spaces admitting a non affine projective transformation.
@article{AIF_1980__30_1_193_0, author = {Kerbrat, Yvan}, title = {Propri\'et\'es projectives des espaces sym\'etriques affines}, journal = {Annales de l'Institut Fourier}, pages = {193--219}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {30}, number = {1}, year = {1980}, doi = {10.5802/aif.780}, mrnumber = {81j:53052}, zbl = {0417.53010}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.780/} }
TY - JOUR AU - Kerbrat, Yvan TI - Propriétés projectives des espaces symétriques affines JO - Annales de l'Institut Fourier PY - 1980 SP - 193 EP - 219 VL - 30 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.780/ DO - 10.5802/aif.780 LA - fr ID - AIF_1980__30_1_193_0 ER -
Kerbrat, Yvan. Propriétés projectives des espaces symétriques affines. Annales de l'Institut Fourier, Tome 30 (1980) no. 1, pp. 193-219. doi : 10.5802/aif.780. http://www.numdam.org/articles/10.5802/aif.780/
[1]Transformations conformes des espaces symétriques pseudo-riemanniens, à paraître. | Zbl
, ,[2]Groups of projective transformations on a projectively connected manifold, Jap. J. Math., 25 (1955), 37-80. | MR | Zbl
,[3]Transformation groups in differential geometry, Springer-Verlag, 1972. | MR | Zbl
,[4]Foundations of differential geometry, vol. I, Interscience, 1963. | MR | Zbl
, ,[5]Géométrie des groupes de transformations, Dunod, 1958. | MR | Zbl
,[6]Symmetric Spaces, vol. I, Benjamin, 1969.
,[7]Geometry associated with semi-simple flat homogeneous spaces, Trans. Amer. Math. Soc., 152 (1970), 159-193. | MR | Zbl
,[8]Ricci-Calculus, Second edition, Springer-Verlag, 1954. | Zbl
,[9]Spaces of constant curvature, Mc Graw-Hill, 1967. | MR | Zbl
,Cité par Sources :