On étudie sommairement la distribution des valeurs de ( : caractère de Dirichlet primitif réel) et on constate qu’on a en général ; on démontre par ailleurs que si , alors ( : conducteur de ; : constante positive effectivement calculable.
The paper gives a rough description of the distribution of values of (, a real primitive residue character), which usually lie under ; and a proof of the following theorem: if , then ( the conductor of ; , a positive, computable constant.
@article{AIF_1979__29_1_125_0, author = {Joly, Jean-Ren\'e and Moser, Claude}, title = {Ordre de grandeur de $L(1,\chi )$ et de $L^{\prime }(1,\chi )$}, journal = {Annales de l'Institut Fourier}, pages = {125--135}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {29}, number = {1}, year = {1979}, doi = {10.5802/aif.730}, mrnumber = {80d:10060}, zbl = {0386.10026}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.730/} }
TY - JOUR AU - Joly, Jean-René AU - Moser, Claude TI - Ordre de grandeur de $L(1,\chi )$ et de $L^{\prime }(1,\chi )$ JO - Annales de l'Institut Fourier PY - 1979 SP - 125 EP - 135 VL - 29 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.730/ DO - 10.5802/aif.730 LA - fr ID - AIF_1979__29_1_125_0 ER -
%0 Journal Article %A Joly, Jean-René %A Moser, Claude %T Ordre de grandeur de $L(1,\chi )$ et de $L^{\prime }(1,\chi )$ %J Annales de l'Institut Fourier %D 1979 %P 125-135 %V 29 %N 1 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.730/ %R 10.5802/aif.730 %G fr %F AIF_1979__29_1_125_0
Joly, Jean-René; Moser, Claude. Ordre de grandeur de $L(1,\chi )$ et de $L^{\prime }(1,\chi )$. Annales de l'Institut Fourier, Tome 29 (1979) no. 1, pp. 125-135. doi : 10.5802/aif.730. http://www.numdam.org/articles/10.5802/aif.730/
[1] Improvement of a result of Linnik and Walfisz, Proc. London Math. Soc., 50 (1949), 423-429. | MR | Zbl
,[2] On the class number of the corpus P(√—k), Proc. Nat. Inst. Sc. India, 13 (1947), 197-200.
,[3] Multiplicative number theory, Markham, Chicago (1967). | MR | Zbl
,[4] On the size of L(1,χ), J. reine angew Math., 236 (1969), 26-36. | MR | Zbl
,[5] Zur Abschätzung von L(1,χ), Nachr. Akad. Wiss. Göttingen Math. Phys., (1964), 101-102. | MR | Zbl
,[6] Suites périodiques et inégalité de Polya, Bull. Sc. Math., 102 (1978), 3-13. | MR | Zbl
,[7] The size of L(1,χ) for real characters χ with prime modulus, J. Number Theory, 2 (1970), 58-73. | MR | Zbl
,[8] Elementary methods in the theory of L-functions, II, Acta Arithm., 31 (1976), 273-289. | MR | Zbl
,[9] On the class number of the corpus P(√—k), Proc. London Math. Soc., 28 (1927), 358-372. | JFM
,[10] Distribution des valeurs de L'(1,χ), Sém. Th. Nombres, Grenoble.
,[11] Littlewood bounds, Proc. Symp. Pure Math. A.M.S., Analytic Number Theory, XXIV (1973).
,Cité par Sources :