Dans ce travail, on considère une classe de germes de singularités de 1-formes intégrables dans qui sont structuralement stables ( si , si ). Dans cette classe la stabilité dépend essentiellement de ce que les perturbations permises sont intégrables.
In this work we consider a class of germs of singularities of integrable 1-forms in which are structurally stable in class ( if , if ), whose 1-jet is zero at the singularity. In this class the stability depends essentially on the fact that the perturbations allowed are integrable.
@article{AIF_1977__27_2_197_0, author = {Neto, Alcides Lins}, title = {Local structural stability of $C^2$ integrable 1-forms}, journal = {Annales de l'Institut Fourier}, pages = {197--225}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {27}, number = {2}, year = {1977}, doi = {10.5802/aif.657}, mrnumber = {58 #2848}, zbl = {0356.58008}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.657/} }
TY - JOUR AU - Neto, Alcides Lins TI - Local structural stability of $C^2$ integrable 1-forms JO - Annales de l'Institut Fourier PY - 1977 SP - 197 EP - 225 VL - 27 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.657/ DO - 10.5802/aif.657 LA - en ID - AIF_1977__27_2_197_0 ER -
Neto, Alcides Lins. Local structural stability of $C^2$ integrable 1-forms. Annales de l'Institut Fourier, Tome 27 (1977) no. 2, pp. 197-225. doi : 10.5802/aif.657. http://www.numdam.org/articles/10.5802/aif.657/
[1] Propriétés Topologiques des Variétés Feuilletées, Actualités Sci. Ind., 1183 (1952). | MR | Zbl
,[2] The Singularities of Integrable Structurally Stable Pfaffian Forms, Proc. of the Nat. Acad. of Sc., vol. 52 (1964), 1431. | MR | Zbl
,[3] Structural Stability of Integrable Differential 1-Forms, Thesis IMPA (1974), to appear. | Zbl
,[4] On Rk ˟ Zl-Actions, Proceedings of the Salvador Symposium on Dynamical Systems (1971). | Zbl
,[5] On Morse-Smale Dynamical Systems, Topology, (1969). | Zbl
,[6] Structural Stability in the Plane with Enlarged Boundary Conditions, Ann. Acad. Bras. Sci., vol. 81 (1959), 135-160. | MR | Zbl
and ,[7] Generic One Parameter Families of Vector Fields on Two-Dimensional Manifolds, Publ. Math. 43, IHESc. | Numdam | Zbl
,[8] Stable Manifolds and Hyperbolic Sets, Global Analysis, Proc. Symp. in Pure Math., vol. XIV, AMS (1970). | MR | Zbl
and ,[9] Ordinary Differential Equations, edited by John Wiley and Sons Inc., 1964. | MR | Zbl
,[10] Structural Stability of integrable forms on 3-manifolds, to appear. | Zbl
,Cité par Sources :