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TOPICS ON KRONECKER SETS
by R. KAUFMAN

In the first part of this note we consider relations between
classes of differentiable functions and linear Kronecker sets.
The problem in each of three theorems is to find a set E of
some narrow type, and a differentiable map 9, so that <p(E)
is a Kronecker set. The first theorem focusses on functions 9
in a prescribed non-quasi-analytic class C(MJ, as described
in [2, V] and [6, Ch. 19]. The second deals with a qualitative
study of <p', and the third uses van der Corput's inequality
to impose a very strong condition on E.

The second part illustrates the use of our method for cons-
tructing Kronecker sets; the lesson is that many special
phenomena of exceptional sets are present in each set of
multiplicity. Here we have in mind the work of Korner [5],
and apply our method to strengthen a theorem on the union
of two Kronecker sets.

1.

Let E be a compact subset of [0, 1]; the exact condition
on E is known, that there be a function cp of class (^[O, 1]
so that 9' > 0 and 9(E) is a Kronecker set [3; 1, VII; 4].
There exist, however, sets E of this type such that 9(E)
is an Mo-set whenever 9' > 0 and 9 e C2. Thus there is
some interest in sets E for which 9 e C00 can be chosen as
before; in the next theorem, we prove what is perhaps an
extremal result on the possible smoothness of 9. Let (Xj
be an increasing sequence of positive numbers and
M,=^ . . .^ .
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THEOREM 1. — Let F be an M.Q-set, and let SX^~1 < oo.
Then there is a Me-set E s F, a function 9 of class C°°(R)
so that

(a) <p' ^ 1 everywhere, ^w = 0(MJ uniformly (n ^ 1).

(&) y(E) is a Kronecker set.

To explain the significance of the condition SX^~1 < oo,
let ^ be C°° of compact support and P^ ===== U + ^ j a so that
by the Plancherel theorem (PJ is log-convex [2] and by the
Denjoy-Carleman theorem SP^P^ < oo [2, 6]. Thus the
condition on (Xj is essential for the technique of partitions
of unity, and Theorem 1 may be best-possible among results
valid for all Mo-sets E.

In the proof of Theorem 1 we take a sequence (aj decrea-
sing to 0 so that ^{a^n)~1 < °°- Then there is a function ^
of compact support, 0 ^ ^ ^ 1, ^ = 1 on a neighbourhood
of 0, and |̂ | ===== 0(aiXi .. . a^Xj [2, 6]. Next we can expand
the interval on which ^ ==== 1 at will, preserving the inequality
0 ^ ^ ^ 1 and the inequalities on ^"). Because lim a^ ==== 0,
each homothety of ^, say 9 {x) = ̂ {A.x + B) also satisfies
the inequalities l^l ^ CAM^ (0 ^ n < oo), with CA a
function of A alone. In particular, if r < r^ < s^ < s, one
of the homotheties equals 1 on (7\, s^) and 0 outside
(r, .).

After a. few reductions we can suppose that F is a closed,
totally disconnected subset of [0, 1] and [L is a probability
measure in F with p. in Co(R). Let {f^)^° be a dense se-
quence in the real Banach space C[0, I], and let (/^)i° be a
sequence of 27c-periodic C°°-funct]ons of mean 1, such that
h^ ^ 0 and h^t) = 0 when m~1 ^ \t\ ^ TT — m-1. Thus
for any function g and real number y, h^{yg — f^) == 0
except on the set (|exp iyg — exp if^\ ^ m~1).

We shall construct a sequence of measures (JL^, beginning
with [AO = (JL and

(1) ^m = U^gm — /m) • P-m-1

where 1 < z/i < • • • < y^ < • • • and g^ converges so
rapidly to a limit 9 that ym\Sm~~~^\ ^ 2m~1. Also,
I P'm — P-rn-il < ^~m so that the weak limit a of the sequence
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( 1 3 V(^) has norm In —, — ) and 6 is in Co(R). On the
" /

support of (7, which is contained in the support of (JL^, we
have [exp^<p — exp if^\ ^ 2m-1, and Theorem 1 will be
proved by constructing the limit 9 with the special properties
listed.

Each h^ has an absolutely convergent Fourier expansion
h^{t) = Safc exp ikt, Og = 1. Thus

M^) — ^m-i(^) == S^ f exp i7c(y^ — fj.exp — iut.d^_^

Now each g^ shall be constructed so that g^ =0 on a
neighbourhood of F; hence there are disjoint intervals L,
covering F, on which g^ = bj, say. We express the integral
above as a sum of integrals over I^,s. The /-th term in the
k-th integral has the same modulus as v(u — ky^bj), where
v •=. v(/c, /) is absolutely continuous with respect to [LQ and
S H^ 7)11 = ll^m-ill tor all k ^ 0. Each v e Co(R),
whence to each s > 0 there is a T so that for all u

|ii>) - ̂ -iW\ ^ ^ + s"H. ||v(/c, /)||,
where 2" means summation over the set of indices

/ c ^ O , \u-ky^\ < T.

N^xt, let us suppose that the values bp of g^. on L,
are distinct, differing among each other by at least r > 0.
Each inequality | u — kybj\ < T has at most one solution /
for each k ^ 0, as soon as yr > 2T. When this condition
is imposed, the sum S" does not exceed max ^-i(Ij) .SjaJ.

From this point is clear how to proceed. Let go = x and
suppose that g^_i is a known function of class C°°, with
gm-'i = 0 on a neighbourhood of F. Let (I,) be a covering of
F by disjoint intervals so that ^_i(I^)2;[aJ < 4-"1, say.
Then there is a function p ^ 0 of compact support, so that
p = Cj > 0 on I,., where the numbers Cj are distinct; the
indefinite integral q of p, with q(— oo) = 0, has the
property that \q\ == 0(1) while

|^+l)]^|p(n)| =()(MJ=0(M^).

For all 8 > 0 sufficiently small, the level sets of (gm-i + 8^),
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form a covering of F finer than the covering (ly) and we
choose g^ = g^_i + 8g. Because 8 can be arbitrarily small
it is clear that the sequence (g^) can be made to converge
to a function 9 fulfilling the inequalities | (p^] == 0{M^)
for n ^ 1, and the inequality \g^ — 9)^ < m~"1. This
completes the proof of Theorem 1.

Theorem 2 is a variation on the idea of building jumps into
the derivative, but using Lebesgue measure for the initial
measure pi, and differential calculus, we give a more precise
conclusion. Let 9 be of class (^[O, I], let F be a closed
subset of [0, I], m(F) > 0, and let

H(y) = m{x 6 F, 9'^) < y), — oo < y < oo.

be the relative distribution function of 9'.

THEOREM 2. — F contains an Mo-set E such that 9(E)
is a Kronecker set, provided H is continuous.

An equivalent statement is that such a set E c F can
be found, provided H is not a pure saltus-function. Theorem 2
is proved by the same inductive process as before, beginning
now with the Lebesgue measure restricted to F, i.e. pio == %F^-
In place of arguments on the sequence of functions g^ we use

LEMMA. — Let H, 9, and F be as in Theorem 2. Then
linir supu J exp — iut.ex^pi T^(t).dt = 0 as T -> + oo.

Proof. — Let k be a positive integer, 8 > 0, and u real,
and let S(/c, 8, u) be the union of all intervals

[pk-\ (p+1)^-1], (P-0, . . . , / c - l )

containing a point x at which |9' — u\ < 8. Using the
uniform continuity of 9' on [0, 1] and of H on (— oo, oo),
we see that to each s > 0 there exist /c,8 so that
m(F n S(/c, 8, u)) < e for all real u. When u and T are
specified let us denote by G any intersection F n (a, &)
where |— u + T9'| ^ 8T throughout (a, fc). We shall give
a uniform method of estimating j expi—iut.exp T ( p ( t ) .dt
and this will prove the lemma.

For definiteness we suppose — u 4- T9'(<) > 0 on [a, 6]
and construct the sequence a === OQ, Oi, . . . such that
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— ut + T<p increases by exactly 27rT-1 between each pair
a^ a^+i. Thus a^+i — a^ ^ 2n (8T)-1 and (a, fc) is covered
by intervals (a^, a^-n) and a remainder < 2n (8T)-1. The
polygonal interpolation 9 of 9, with nodes OQ, Oi, . . . , b
has the property [9 — cp[ == o(T-1) by the mean-value theo-
rem, and the estimation

f exp — iut.expi Ty^) .dt -> 0 as T —>- + oo
«/ G

follows from the Lebesgue density theorem. This concludes
the proof of the lemma.

THEOB^EM 3. — Let 9 have an absolutely continuous deri-
vative on [0, I], and Ci ^ 9" ^ Cg almost everywhere
(0 < Ci < Cg < oo). Let w{u) be positive on [0, oo), increa-
sing to + oo. Then there is a subset E so that 9(E) is a
Kronecker set, and a measure (A ^ 0 in E such that

W=o(\u\~^)^\u^
As in the two previous proofs, all depends on a suitable

estimate of an exponential integral. The sequence (/„,), dense
in C[0, I], is now supposed to contain functions of class C2;
thus beginning with the Lebesgue measure m on [0, I],
all measures constructed by the inductive process have the
form ^ == p^m, with p^ e C2. Thus there is a constant C^
so that

\f fd^m ^ C, sup, |J^ f(t) dt (0 ^ ( ^ 1).

Thus the following estimation enables us to complete the
proof.

For all y > yo, k ^ 1 or k < — 1, and real u

\f^ exp — iut.exp ik{y^ — f^.dt ^ C^u\ 2 ,

and moreover, the integrals are uniformly o(l) as y —> oo.
To prove this we use the inequality 9" ^ Ci > 0 and

1f^ e C2 to choose y so large that y ^ " — f'^ ^ — C^y. By
Zi

van der Corput's inequality [7, p. 197] the integrals are

uniformly 0[\ky\ 2 ) , so the second part is disposed of. More-
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over, the first inequalities are valid on domains of the type
| to/[ ^ e|u|, for any fixed s > 0. For the complementary
domain \u\e > \ky\,

1^/9 -f.r\ < ̂ \w+y-^\^\f^
Thus for small s and large y, — ut + /c(i/<p — /„,) has deri-

1 1vative ^ -̂ - [ u| or ^ — — | u\. We can then write
2i 2i

- ut + /c(i/9 - Q = up(t) where -J- ^ |j/(^)| and |p"^)| ^ C;,

The integral then takes the form j exp — ius q(s) ds
v a-

where \q(s)\ < 2 and q{s) has total variation ^ 2C^,. The
_JL

integral then has modulus < 8CIn|^[~1 ^ C^|u| 2 , because
|u[ > \y\ —> + 00- This proves the required estimation.

The last theorem about differentiable functions is a comple-
ment to the first and second; its proof involves a lemma on
interpolation of differentiable functions. The set E of Theo-
rem 1 can be mapped by a diffeomorphism <p of class C(MJ
onto a Kronecker set, and in fact 9" == 0 on E; by [1] E
can also be mapped by a C1-diffeomorphism ^ onto a Krone-
cker set, and here ^ / = 1 on E. Quite possibly E could be
constructed so that the diffeomorphism 9 is smooth and has
derivative 1 on E, but the method of Theorem 1 plainly
fails to accomplish this. The theorem to be proved shows that
the existence of diffeomorphisms 9 and ^ by no means
implies that their characteristics can be attained simultane-
ously. A similar property of stability of Mo-sets is obtained in
[4] by an entirely different technique.

THEOREM 2'. — Let F and 9 be as in Theorem 2, and let
w(u) be positive and increasing on (0, oo), w(0 +) = 0.
Then the set EC F can be so chosen that 9(E) is a Kronecker
set, but ^(E) is an M.Q-set whenever ^ e ^[O, I], ^' = 1 on
E, and \^{s) — ^(t)\ ^ w{\s — t\) for 0 ^ s < t ^ 1.

When F is totally disconnected, 9 can be constructed in
any non-quasi-analytic class C(M^) so that 9' is strictly
increasing and 9" === 0 on F; the simple example 9 (a?) == x2

illustrates that analyticity has no obvious consequences
about E. The necessity of the lemma needs to be explained.
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Beginning from the set F, the subset E c F is to be defined,
and thereby a certain subset of C1, say S(E). But Si(E)
is then known only in principle and is obviously much larger
than S(F). Thus the construction seems to be circular,
because it requires some knowledge of S(E) to proceed.
To circumvent this obstacle we consider all sets S(E) simul-
taneously, attempting to replace each function ^i in S(E)
by a function ^i in (^[O, I], such that ^ == +1 in E and
^i = 1 in E U F. This, however, is possible only if [0, 1] ^ F
meets each interval (a, b) c (0, 1) in a. subset whose measure
is not much smaller than (& — a).w{b — a), because ^[ = 1
on F. To solve this problem of interpolation we must there-
fore replace Fi by a subset whose complementary intervals
are specially constructed.

LEMMA. — Corresponding to the function w there is a closed
set FI with this property: whenever E c [0, 1] and
^ e Si(E), then ^ coincides with a function ^i e C^O, 1]
whose derivative is 1 on E U Fi. Moreover all the derivatives
ipi so constructed are equicontinuous on [0, I], Finally,
m(F n Fi) > 0.

Proof. — Let T^ be an increasing sequence of positive
numbers and R ^ Fi the set defined by x ^ Fi if
|T^—q\ ^ n~2 for some integer q and n ^ 1. When (TJ
increases rapidly, m(F n Fi) > 0; we specify that Ti > 8
and w(8T^) ^ (n + I)-3. Thus, if b - a > 8T;-1,
(R ^ Fi) n (a, b) contains intervals of length 27^~2T„~1,
whose total length exceeds n"^{h — a). Let now E be a
closed subset of [0, 1] and ^ a function in the class Si(E),
and write ^^{x) = ̂  — ^{x)' Now ^2 ls considered as a
function defined only on E; then

\W -Ut)\ < h -W^-^1)
by the mean-value theorem. To each interval [a, 6] meeting
E only in its end-points a and &, there is a least integer n
with b — a > ST^1. Then (a, b) meets R - Fi in a
certain set of intervals, of total length > n"2^ — a). The
derivative of ^3 will have a triangular graph over these
intervals, of height h, and will vanish elsewhere in (a, 6).
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The common height h of these triangles fulfills an inequality
n-\b — a).\h\ ^ 2|^(&) — ^(a)| ^ 2(& — d)w[b — a). Incase
1 > fc -— a > 8Tf1, we obtain \h\ ^ 2w(l); when
8T î ^ b — a > 8Tn~1, we have w(b — a) ^ n~3 and then
|A| ^ 2n~1. To complete the extension of ^a onto [0, I],
we extend to be constant to the left and right of [0, 1]. The
equicontinuity of the aggregate {^} follows from the
triangular shape and the fact that |̂ | ^ 2n~1 on the interval
(a, V) provided b — a < 2n-2T71. Finally, set

+i(^) = x— ̂ )

and the lemma is complete.
To prove the main result, we can assume that Fi == F,

and construct E as in Theorem 2 so that ^i(E) is an Mo-set
for each function ^i constructed in the lemma. This can be
accomplished with the aid of uniform estimates for integrals
of the form

j exp — iu^i (<).exp iy^(t).dt.

To each 8 > 0 there is a neighbourhood V§ 2 F on which
|^i — 1[ < 8 for each function ^i, and from this point the
argument of Theorem 2 is valid, so the integrals tend to 0
uniformly as y -> oo.

Theorem 2' is valid for the weaker inequality

!.)/(.)-<}/(()! =OH(-5|),
since there is a function g, locally constant on E, so that

j_
g' 4- ^f has modulus of continuity at most w 2 .

2.

THEOREM 4. — Let \ be a continuous, finite measure on R,
and F an Mo-set. Then there is a Kronecker set E and a
positive measure (JL 7^ 0 in E such that each set
{|p.(u)| > 8, |^(u)[ ^ 8} is compact. Moreover to each 8 > 0
there is a Uy so that the set {\{^{u + ^o)| ^ ^? 1^(^)1 ^ ^} ls

empty.
Here we set 9(0;) == x so that the support of the limit

measure \L is a Kronecker set. Of course we cannot obtain
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uniform convergence of p.^, but only pointwise convergence,
3 1sufficient to ensure that -7.- > (i(E) > — However, we can
2i 2t

obtain uniform convergence on each of the subsets
R§ == {1^(^)1 ^ S}. A classical theorem of Wiener shows that
|^.|2 has mean-value 0, and for each 8 there is an 73 > 0
such that Rg + (0, -^R^g. Thus R§ + (0, 73) meets

2
[— a, a] in a set of measure o(a). An elementary covering
argument shows that this remains valid for R§ + I? I being
a fixed, finite interval, and plainly that property is preserved
by dilations and translations of R§. Thus we obtain the
important property of R§ : there is a sequence y^ such that
lim d(ky^ Rg) == + oo for each 8 > 0 and each integer
k ^ 0. Examination of the formula for p^(u) — y-m-iW
shows that it is possible to force the sequence p.̂  to converge
uniformly on each R§. Because each p-^ e Co, the limit
p. e Co(R§) and this expresses the first property claimed for p..

To obtain the second we choose a sequence (u^) along
with ([A^). Now p.̂  e Co(R) so there is a number — u^
so far from R^ — 1 that |p-^(u — u^)| < m~1 whenever
|^(u)| ^ m~1', or |p.J < m~1 on R^ — 1 + ^m- From here
the argument is almost as before, except that p.̂  — p.^_i
must be controlled on a set of the type finite + Rg and this is
easily attained. In the limit we have, for example, |p.j < 2m~1

on R^ — 1 -|- u^ so that the inequalities \\\ > m~1 and
[p.(u — u^)\ > 2m"'1 exclude each other.

Here is a simple consequence of Theorem 4. To each uncoun-
table closed set E thereare a Kronecker set Ei, disjoint from E
and probability measures [L in Ei, X in E, so that
limsuplp.) +1^1 ^ I? ^d a sequence of characters %^ so
that 1̂ 1 + |^| < + rn-1 + 1. Thus E u Ei is at most
H i , in a sense somewhat stronger than in [5]; of course the

~2
most interesting case occurs when E is itself a Kronecker set.
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