On donne des conditions suffisantes sous lesquelles, pour un convexe borné fermé
Sufficient conditions are given in order that, for a bounded closed convex subset
@article{AIF_1970__20_2_45_0, author = {Phelps, Robert R.}, title = {Theorems of {Krein} {Milman} type for certain convex sets of functions operators}, journal = {Annales de l'Institut Fourier}, pages = {45--54}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {20}, number = {2}, year = {1970}, doi = {10.5802/aif.351}, mrnumber = {44 #4501}, zbl = {0195.40807}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.351/} }
TY - JOUR AU - Phelps, Robert R. TI - Theorems of Krein Milman type for certain convex sets of functions operators JO - Annales de l'Institut Fourier PY - 1970 SP - 45 EP - 54 VL - 20 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.351/ DO - 10.5802/aif.351 LA - en ID - AIF_1970__20_2_45_0 ER -
%0 Journal Article %A Phelps, Robert R. %T Theorems of Krein Milman type for certain convex sets of functions operators %J Annales de l'Institut Fourier %D 1970 %P 45-54 %V 20 %N 2 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.351/ %R 10.5802/aif.351 %G en %F AIF_1970__20_2_45_0
Phelps, Robert R. Theorems of Krein Milman type for certain convex sets of functions operators. Annales de l'Institut Fourier, Tome 20 (1970) no. 2, pp. 45-54. doi : 10.5802/aif.351. https://www.numdam.org/articles/10.5802/aif.351/
[1] The support functionals of a convex set, Proc. Symp. Pure Math. vol 7 (Convexity), A.M.S. (1963), p. 27-35. | MR | Zbl
and ,[2] Extreme operators into C(K), Pacific J. Math. 15 (1965), p. 747-756. | MR | Zbl
, and ,[3] Espaces vectoriels topologiques, Ch. 1 et 2, 2e édition, Paris, 1966.
,[4] Vector measures, Berlin, 1967.
,[5] Linear operators Part I, (1958), Interscience. | Zbl
and ,[6] Theorems of Krein-Milman type for certain convex sets of operators, Trans. Amer. Math. Soc. 150 (1970), 183-200. | MR | Zbl
and ,[7] Generalization of a theorem of Lindenstrauss (dittoed notes).
,- Trotter’s limit formula for the Schrödinger equation with singular potential, Journal of Mathematical Physics, Volume 58 (2017) no. 12 | DOI:10.1063/1.5013243
- Operator analogs of the Krein - Milman theorem, Functional Analysis and Its Applications, Volume 14 (1980) no. 2, p. 130 | DOI:10.1007/bf01086562
- Convex sets, extreme points, and simplexes, Journal of Soviet Mathematics, Volume 4 (1975) no. 6, p. 625 | DOI:10.1007/bf01083882
Cité par 3 documents. Sources : Crossref