Some results on Kronecker, Dirichlet and Helson sets
Annales de l'Institut Fourier, Tome 20 (1970) no. 2, pp. 219-324.

On construit les ensembles suivants : un ensemble parfait non de Dirichlet tel que tout sous-ensemble strict fermé soit un ensemble de Kronecker ; un ensemble de Kronecker faible qui n’est pas un ensemble de type R ; un ensemble de Dirichlet dénombrable indépendant qui n’est pas un ensemble de Kronecker ; une famille de q ensembles de Kronecker disjoints dont l’union est indépendante mais n’est pas un ensemble de Helson 1/q ; une famille dénombrable d’ensembles de Kronecker disjoints dont l’union est fermée et indépendante mais n’est pas un ensemble de Helson : un ensemble de Dirichlet indépendant et parfait qui n’est pas un ensemble de Helson.

We construct the following: a perfect non Dirichlet set every proper closed subset of which is Kronecker, A weak Kronecker set which is not an R set; an independent countable Dirichlet set which is not Kronecker; a collection of q-disjoint Kronecker sets whose union is independent but Helson 1/q; A countable collection of disjoint Kronecker sets whose union is closed and independent but not Helson: a perfect independent Dirichlet set which is not Helson.

@article{AIF_1970__20_2_219_0,
     author = {Korner, Thomas-William},
     title = {Some results on {Kronecker,} {Dirichlet} and {Helson} sets},
     journal = {Annales de l'Institut Fourier},
     pages = {219--324},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {20},
     number = {2},
     year = {1970},
     doi = {10.5802/aif.355},
     mrnumber = {44 #1995},
     zbl = {0196.08403},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.355/}
}
TY  - JOUR
AU  - Korner, Thomas-William
TI  - Some results on Kronecker, Dirichlet and Helson sets
JO  - Annales de l'Institut Fourier
PY  - 1970
SP  - 219
EP  - 324
VL  - 20
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.355/
DO  - 10.5802/aif.355
LA  - en
ID  - AIF_1970__20_2_219_0
ER  - 
%0 Journal Article
%A Korner, Thomas-William
%T Some results on Kronecker, Dirichlet and Helson sets
%J Annales de l'Institut Fourier
%D 1970
%P 219-324
%V 20
%N 2
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.355/
%R 10.5802/aif.355
%G en
%F AIF_1970__20_2_219_0
Korner, Thomas-William. Some results on Kronecker, Dirichlet and Helson sets. Annales de l'Institut Fourier, Tome 20 (1970) no. 2, pp. 219-324. doi : 10.5802/aif.355. http://www.numdam.org/articles/10.5802/aif.355/

[1] J. Arbault, Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. France, t. 80, (1952), 254-317. | Numdam | MR | Zbl

[2] N. K. Bary, A Treatise on Trigonometric Series, Vol. II., English translation Pergamon Press, Oxford (1964). | MR | Zbl

[3] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, (1965).

[4] G. H. Hardy and E. M. Wright, Introduction to the Theory of Numbers, 4th edition, Oxford University Press, (1959).

[5] S. Hartman and C. Ryll-Nardzewski, Über die Spaltung von Fourierreihen fast periodischer Funktionen, Studia Mathematica 19, (1960) 287-295. | MR | Zbl

[6] F. Haudsorff, Set Theory, English translation, Chelsea, New York (1957). | Zbl

[7] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Springer Verlag, Berlin (1963).

[8] J.-P. Kahane, Approximation par des exponentielles imaginaires ; ensembles de Dirichlet et ensembles de Kronecker. Journal of Approximation Theory 2, (1969).

[9] J.-P. Kahane and R. Salem, Ensembles Parfaits et Séries Trigonométriques, Hermann, Paris (1963). | MR | Zbl

[10] Y. Katznelson, An Introduction to Harmonic Analysis. John Wiley and Sons, New York, (1968). | MR | Zbl

[11] R. Kaufman, A Functional Method for Linear Sets, Israel J. Math. 5, (1967). | MR | Zbl

[12] O. Ore, Theory of Graphs, American Mathematical Society Colloquium Publications, Vol. XXXVIII, A.M.S.: Rhode Island (1962). | MR | Zbl

[13] W. Rudin, Fourier Analysis on Groups, John Wiley and Sons, New York, (1967).

[14] R. Salem, Œuvres Mathématiques, Hermann, Paris (1967). | MR | Zbl

[15] I. Wik, Some Examples of Sets with Linear Independence, Ark. Mat. 5, (1965), 207-214. | Zbl

[16] A. Bernard and N.-Th. Varopoulos, Groupes des fonctions continues sur un compact, Studia Mathematica 35, (1970), 199-205. | Zbl

[17] N.-Th. Varopoulos, Groups of Continuous Functions in Harmonic Analysis Acta. Math, 125, (1970), 109-154. | MR | Zbl

[18] N.-Th. Varopoulos, Comptes Rendus Acad. Sci., Paris, 268, (1969), 954-957. | Zbl

[19] N.-Th. Varopoulos, A problem on Kronecker sets, Studia Mathematica 37, (1970), 95-101. | MR | Zbl

Cité par Sources :