Probability and a Dirichlet problem for multiply superharmonic functions
Annales de l'Institut Fourier, Tome 18 (1968) no. 2, pp. 221-279.

Soit un préfaisceau complet de fonctions “harmoniques” définies sur W. Un critère de régularité pour les points des frontières idéales de W est donné. Pour chaque sous-treillis banachique de ℬℋ W , il existe une frontière idéale qui compactifie W et qui contient une “frontière harmonique” Γ qui est l’ensemble des points réguliers ; est isométriquement isomorphe à 𝒞(Γ ) Parmi des applications se trouvent les théories frontières de Wiener et Royden et aussi les classes comparables harmoniques.

@article{AIF_1968__18_2_221_0,
     author = {Walsh, John B.},
     title = {Probability and a {Dirichlet} problem for multiply superharmonic functions},
     journal = {Annales de l'Institut Fourier},
     pages = {221--279},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {18},
     number = {2},
     year = {1968},
     doi = {10.5802/aif.299},
     zbl = {0172.38702},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.299/}
}
TY  - JOUR
AU  - Walsh, John B.
TI  - Probability and a Dirichlet problem for multiply superharmonic functions
JO  - Annales de l'Institut Fourier
PY  - 1968
SP  - 221
EP  - 279
VL  - 18
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.299/
DO  - 10.5802/aif.299
LA  - en
ID  - AIF_1968__18_2_221_0
ER  - 
%0 Journal Article
%A Walsh, John B.
%T Probability and a Dirichlet problem for multiply superharmonic functions
%J Annales de l'Institut Fourier
%D 1968
%P 221-279
%V 18
%N 2
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.299/
%R 10.5802/aif.299
%G en
%F AIF_1968__18_2_221_0
Walsh, John B. Probability and a Dirichlet problem for multiply superharmonic functions. Annales de l'Institut Fourier, Tome 18 (1968) no. 2, pp. 221-279. doi : 10.5802/aif.299. http://www.numdam.org/articles/10.5802/aif.299/

[1] R. Arens and I. M. Singer, Function values as boundary integrals, Proc. Amer. Math. Soc. 5, (1954), 735-745. | MR | Zbl

[2] V. Avanissian, Fonctions plurisousharmoniques et fonctions doublement sousharmoniques, Ann. Scient. Ec. Norm. Sup. 78 (1961), 101-161. | Numdam | MR | Zbl

[3] H. Bauer, Šilovcher Rand und Dirichletsches Problem, Ann. Inst. Fourier 11 (1961), 89-136. | Numdam | MR | Zbl

[4] S. Bergman, Functions of extended class in the theory of functions of several complex variables, Trans. Amer. Math. Soc. 63 (1948), 523-547. | MR | Zbl

[5] D. Blackwell, On a class of probability spaces, Proc. Third Berkeley Symp. on Stat. and Prob. (1956), 1-6. | MR | Zbl

[6] M. Brelot, Éléments de la théorie classique du potentiel, Centre de Documentation Universitaire, Paris 1961.

[7] M. Brelot, Le Problème de Dirichlet. Axiomatique et frontière de Martin ; J. de Math. 35 (1963), 297-334. | MR | Zbl

[8] H. J. Bremermann, On the conjecture of equivalence of the plurisubharmonic functions and the Hartog functions, Math. Ann. 131 (1956), 76-86. | MR | Zbl

[9] H. J. Bremermann, Note on plurisubharmonic functions and Hartogs functions, Proc. Amer. Math. Soc. 7 (1956), 771-775. | MR | Zbl

[10] H. J. Bremermann, On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains, Trans. Amer. Math. Soc. 91 (1956), 246-276. | MR | Zbl

[11] K. L. Chung and J. L. Doob, Fields, optionality and measurability, Amer. J. Math. 87 (1965), 397-424. | MR | Zbl

[12] P. Courrège and P. Priouret, Axiomatique du problème de Dirichlet et processus de Markov, Seminaire Brelot, Choquet et Deny 1963/1964. | Numdam | Zbl

[13] P. Courrège and P. Priouret, Temps d'arrêt d'une fonction aléatoire : Relations d'équivalence associées et propriétés de décomposition, Publ. de l'Inst. de Statistique, Paris 14 (1965), 245-278. | MR | Zbl

[14] P. Courrège and P. Priouret, Recollements de processus de Markov, Ibid., 275-376. | MR | Zbl

[15] J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86-121. | MR | Zbl

[16] J. L. Doob, A probability approach to the heat equation, Trans. Amer. Math. Soc. 80 (1955), 216-280. | MR | Zbl

[17] J. L. Doob, Probability methods applied to the first boundary value problem, Proc. Third Berkeley Symp. on Stat. and Prob. (1956), 19-54. | MR | Zbl

[18] J. L. Doob, Probability theory and the first boundary value problem, Ill. J. Math. 2 (1958), 19-36. | MR | Zbl

[19] J. L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France 85 (1957), 431-458. | Numdam | MR | Zbl

[20] J. Gorski, The method of extremal points and Dirichlet's problem in the space of two complex variables, Arch. Rat. Mech. Anal. 4 (1960), 412-427. | MR | Zbl

[21] J. Gorski, Remark on a certain theorem of H. J. Bremermann, Ann. Pol. Math. 11 (1962), 225-227. | MR | Zbl

[22] P. R. Halmos, Measure Theory, Van Nostrand, Princeton, 1950. | MR | Zbl

[23] G. A. Hunt, Markov processes and potentials, I, II, III. Ill. J. Math. 1 (1957), 44-93, 316-369 ; Ibid. 2 (1958), 151-213. | Zbl

[24] N. Ikeda, M. Nagasawa and S. Watanabe, A construction of Markov processes by piecing out, Proc. Japan Acad. 42 (1966) 370-375. | MR | Zbl

[25] S. Kakutani, Two dimensional Brownian motion and harmonic functions, Proc. Imp. Acad. Tokyo 20 (1944), 706-714. | MR | Zbl

[26] I. Kimura, Sur les fonctions plurisousharmoniques et les barriers, Proc. Japan Acad. 36 (1960), 639-643. | MR | Zbl

[27] H. Kunita and T. Watanabe, (to appear).

[28] Y. Kusunoki, On a generalized Dirichlet problem for plurisubharmonic functions, J. Math. Kyoto Univ. 4 (1964), 123-147. | MR | Zbl

[29] F. Leja, Une méthode élémentaire de résolution de problème de Dirichlet dans le plan, Ann. Soc. Polon. Math. 23 (1950), 230-245. | MR | Zbl

[30] P. Lelong, Les fonctions plurisousharmoniques, Ann. Soc. Ec. Norm. Sup. 62 (1945), 301-338. | Numdam | MR | Zbl

[31] M. Loève, Probability Theory, Van Nostrand, Princeton, 1963. | MR | Zbl

[32] R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172. | JFM | MR | Zbl

[33] P. A. Meyer, Probability and Potentials, Blaisdell, 1966. | MR | Zbl

[34] J. Siciak, On function families with boundary, Pac. J. Math. 12 (1962), 375-384. | MR | Zbl

[35] J. Siciak, On some extremal functions and their applications to the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. | MR | Zbl

Cité par Sources :