Dans cet article, on étudie, certains résultats sur la mesurabilité restreinte [Trevor J. Mc Minn, Restricted Measurability, Bull. Amer. Math. Soc. (1948), vol. 54, July-Dec., 1105] et à l’aide de cette notion, on construit une mesure de Radon analogue à celle de Mr. Sion [A Characterization of weak convergence, Pacific Jour. of Math. (1964), vol. 14, no 3, 1059] et on établit certaines de ses propriétés.
@article{AIF_1966__16_2_159_0, author = {Mookhopadhyaya, A. K.}, title = {On restricted measurability}, journal = {Annales de l'Institut Fourier}, pages = {159--166}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {16}, number = {2}, year = {1966}, doi = {10.5802/aif.239}, mrnumber = {34 #7755}, zbl = {0147.04503}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.239/} }
Mookhopadhyaya, A. K. On restricted measurability. Annales de l'Institut Fourier, Tome 16 (1966) no. 2, pp. 159-166. doi : 10.5802/aif.239. http://www.numdam.org/articles/10.5802/aif.239/
[1] Measure Theory (1950).
,[2] General Topology (1955).
,[3] Measure and Integration (1952).
,[4] A characterization of weak convergence, Pacific Journal of Mathematics (1964), vol. 14, n° 3, 1059. | MR | Zbl
,[5] Restricted Measurability, Bull. Amer. Math. Soc (1948), vol. 54, July-Dec., 1105. | MR | Zbl
,Cité par Sources :