On s’intéresse dans ce travail au lien entre les solutions fortes des équations de Boltzmann et de Navier–Stokes. Pour justifier cette relation, notre idée principale est d’utiliser des informations sur le système limite (par exemple le fait que les équations de Navier–Stokes ont une solution globale unique en deux dimensions d’espace, ou quand la donnée initiale est petite). En particulier on démontre que le temps d’existence de la solution de l’équation de Boltzmann remise à l’échelle est toujours plus grand que celui du système de Navier–Stokes. On considère des données initiales générales dans l’espace entier en dimensions 2 et 3, et nous traitons également le cas de données bien préparées dans le cas de conditions aux limites périodiques.
In this work, we are interested in the link between strong solutions of the Boltzmann and the Navier–Stokes equations. To justify this connection, our main idea is to use information on the limit system (for instance the fact that the Navier–Stokes equations are globally wellposed in two space dimensions or when the initial data is small). In particular we prove that the life span of the solutions to the rescaled Boltzmann equation is bounded from below by that of the Navier–Stokes system. We deal with general initial data in the whole space in dimensions 2 and 3, and also with well-prepared data in the case of periodic boundary conditions.
Révisé le :
Accepté le :
Publié le :
Mots-clés : équation de Navier–Stokes, équation de Boltzmann
@article{AHL_2020__3__561_0, author = {Gallagher, Isabelle and Tristani, Isabelle}, title = {On the convergence of smooth solutions from {Boltzmann} to {Navier{\textendash}Stokes}}, journal = {Annales Henri Lebesgue}, pages = {561--614}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.40}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.40/} }
TY - JOUR AU - Gallagher, Isabelle AU - Tristani, Isabelle TI - On the convergence of smooth solutions from Boltzmann to Navier–Stokes JO - Annales Henri Lebesgue PY - 2020 SP - 561 EP - 614 VL - 3 PB - ÉNS Rennes UR - http://www.numdam.org/articles/10.5802/ahl.40/ DO - 10.5802/ahl.40 LA - en ID - AHL_2020__3__561_0 ER -
Gallagher, Isabelle; Tristani, Isabelle. On the convergence of smooth solutions from Boltzmann to Navier–Stokes. Annales Henri Lebesgue, Tome 3 (2020), pp. 561-614. doi : 10.5802/ahl.40. http://www.numdam.org/articles/10.5802/ahl.40/
[BCD11] Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011 | MR | Zbl
[BGL91] Fluid dynamic limits of the Boltzmann equation I. Formal derivations, J. Stat, Phys., Volume 63 (1991) no. 1-2, pp. 323-344 | DOI
[BGL93] Fluid dynamic limits of kinetic equations II: Convergence proofs for the Boltzmann equation, Commun. Pure Appl. Math., Volume 46 (1993) no. 5, pp. 667-753 | DOI | MR | Zbl
[BMAM19] From Boltzmann to incompressible Navier–Stokes in Sobolev spaces with polynomial weight, Anal. Appl., Singap., Volume 17 (2019) no. 1, pp. 85-116 | DOI | MR | Zbl
[BMN97] Regularity and integrability of D Euler and Navier–Stokes equations for rotating fluids, Asymptotic Anal., Volume 15 (1997) no. 2, pp. 103-150 | DOI | Zbl
[Bri15] From the Boltzmann equation to the incompressible Navier–Stokes equations on the torus: a quantitative error estimate, J. Differ. Equations, Volume 259 (2015) no. 11, pp. 6072-6141 | DOI | MR | Zbl
[BU91] The classical incompressible Navier–Stokes limit of the Boltzmann equation, Math. Models Methods Appl. Sci., Volume 1 (1991) no. 2, pp. 235-257 | DOI | MR | Zbl
[Caf80] The fluid dynamic limit of the nonlinear Boltzmann equation, Commun. Pure Appl. Math., Volume 33 (1980), pp. 651-666 | DOI | MR | Zbl
[CC60] The mathematical theory of non-uniform gases: An account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases, Cambridge University Press, 1960 | Zbl
[CDGG00] Fluids with anisotropic viscosity, M2AN, Math. Model. Numer. Anal., Volume 34 (2000) no. 2, pp. 315-335 | DOI | Numdam | MR | Zbl
[CG06] On the global wellposedness of the 3-D Navier–Stokes equations with large initial data, Ann. Sci. Éc. Norm. Supér., Volume 39 (2006) no. 4, pp. 679-698 | DOI | Numdam | MR | Zbl
[CG10] Large, global solutions to the Navier–Stokes equations slowly varying in one direction, Trans. Am. Math. Soc., Volume 362 (2010) no. 6, pp. 2859-2873 | DOI | MR | Zbl
[Che92] Remarques sur l’existence globale pour le système de Navier–Stokes incompressible, SIAM J. Math. Anal., Volume 23 (1992) no. 1, pp. 20-28 | DOI | Zbl
[CL95] Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes, J. Differ. Equations, Volume 121 (1995) no. 2, pp. 314-328 | DOI | Zbl
[DEL89] Incompressible Navier–Stokes and Euler limits of the Boltzmann equation, Commun. Pure Appl. Math., Volume 42 (1989) no. 8, pp. 1189-1214 | DOI | MR
[DPL89] On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math., Volume 130 (1989) no. 2, pp. 321-366 | DOI | MR
[EP75] The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pures Appl., Volume 54 (1975), pp. 125-156 | MR | Zbl
[FK64] On the Navier–Stokes initial value problem I, Arch. Ration. Mech. Anal., Volume 16 (1964), pp. 269-315 | DOI | MR | Zbl
[GIP03] Asymptotics and stability for global solutions to the Navier–Stokes equations, Ann. Inst. Fourier, Volume 53 (2003) no. 5, pp. 1387-1424 | DOI | MR | Zbl
[Gla96] The Cauchy problem in kinetic theory, Other Titles in Applied Mathematics, Society for Industrial and Applied Mathematics, 1996, xii+241 pages | Zbl
[GMM17] Factorization of non-symmetric operators and exponential H-theorem, Mém. Soc. Math. Fr., Nouv. Sér., Volume 153 (2017), pp. 3-137 | Zbl
[Gra63] Asymptotic theory of the Boltzmann equation II. Rarefied gas dynamics, Proc. of the 3rd Intern. Sympos. Palais de l’UNESCO, Paris, 1962, Volume 1, Academic Press Inc. (1963), pp. 26-59
[Gra64] Asymptotic equivalence of the Navier–Stokes and nonlinear Boltzmann equations, Proc. Sympos. Appl. Math., Volume 17 (1964), pp. 154-183 | DOI | Zbl
[Gre97] Oscillatory perturbations of the Navier–Stokes equations, J. Math. Pures Appl., Volume 76 (1997) no. 6, pp. 477-498 | DOI | MR | Zbl
[GSR04] The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., Volume 155 (2004) no. 1, pp. 81-161 | DOI | MR | Zbl
[GSR09] The incompressible Navier–Stokes limit of the Boltzmann equation for hard cutoff potentials, J. Math. Pures Appl., Volume 91 (2009) no. 5, pp. 508-552 | DOI | MR | Zbl
[Guo06] Boltzmann diffusive limit beyond the Navier–Stokes approximation, Commun. Pure Appl. Math., Volume 59 (2006) no. 5, pp. 626-687 | MR | Zbl
[Hil02] Sur les problèmes futurs des mathématiques, Compte-Rendu du 2ème Congrès International de Mathématiques, tenu à Paris en 190, Gauthier-Villars (1902), pp. 58-114 | Zbl
[Lac87] On the initial layer and the existence theorem for the nonlinear Boltzmann equation, Math. Methods Appl. Sci., Volume 9 (1987) no. 3, pp. 342-366 | DOI | MR | Zbl
[Lem02] Recent developments in the Navier–Stokes problem, Research Notes in Mathematics, 431, Chapman & Hall/CRC, 2002 | MR | Zbl
[Lem16] The Navier–Stokes problem in the 21st century, CRC Press, 2016 | Zbl
[Ler33] Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appl., Volume 12 (1933), pp. 1-82 | Zbl
[Ler34] Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., Volume 63 (1934), pp. 193-248 | DOI | MR | Zbl
[LM01] From Boltzmann equation to the Navier–Stokes and Euler equations II, Arch. Ration. Mech. Anal., Volume 158 (2001) no. 3, pp. 195-211 | DOI
[LM10] From the Boltzmann equation to an incompressible Navier–Stokes–Fourier system, Arch. Ration. Mech. Anal., Volume 196 (2010) no. 3, pp. 753-809 | DOI | MR | Zbl
[LZ01] On the nonnegativity of solutions of the Boltzmann equation, Transp. Theory Stat. Phys., Volume 30 (2001) no. 7, pp. 641-657 | MR | Zbl
[MN06] Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, Volume 19 (2006) no. 4, pp. 969-998 | DOI | MR | Zbl
[Nis78] Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Commun. Math. Phys., Volume 61 (1978) no. 2, pp. 119-148 | DOI | MR | Zbl
[Sch85] decay for weak solutons of the Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 88 (1985) no. 3, pp. 209-222 | DOI | MR | Zbl
[Sch94] Fast singular limits of hyperbolic PDEs, J. Differ. Equations, Volume 114 (1994) no. 2, pp. 476-512 | DOI | MR | Zbl
[Sch95] Large time behaviour of solutions to the Navier–Stokes equations in spaces, Commun. Partial Differ. Equations, Volume 20 (1995) no. 1-2, pp. 103-117 | DOI | MR | Zbl
[SR09] Hydrodynamic limits of the Boltzmann equation, Lecture Notes in Mathematics, 1971, Springer, 2009 | MR | Zbl
[Uka86] Solutions of the Boltzmann equation, Patterns and waves. Qualitative analysis of nonlinear differential equations (Studies in Mathematics and its Applications), Volume 18, North-Holland, 1986, pp. 37-96 | DOI | Zbl
[UY06] Mathematical theory of the Boltzmann equation, Lecture Notes Series, 8, Liu Bie Ju Center for Mathematical Sciences, City University of Hong-Kong, 2006
[Wie87] Decay results for weak solutions of the Navier–Stokes equations on , J. Lond. Math. Soc., Volume 35 (1987), pp. 303-313 | DOI | MR | Zbl
Cité par Sources :