Contrairement au cas usuel de dimension finie, le groupe de Möbius admet des auto-représentations intéressantes lorsqu’il est de dimension infinie. Nous les construisons et classifions toutes.
Les démonstrations sont conduites dans le cadre équivalent des groupes d’isométries des espaces de Lobatchevski et reposent sur le concept de noyau de type hyperbolique, en analogie avec la notion classique de noyau de type positif ou négatif.
Contrary to the finite-dimensional case, the Möbius group admits interesting self-representations when infinite-dimensional. We construct and classify all these self-representations.
The proofs are obtained in the equivalent setting of isometries of Lobachevsky spaces and use kernels of hyperbolic type, in analogy with the classical concepts of kernels of positive and negative type.
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/ahl.14
Mots-clés : Möbius group, Lobatchevsky space, hyperbolic space, infinite-dimensional space
@article{AHL_2019__2__259_0, author = {Monod, Nicolas and Py, Pierre}, title = {Self-representations of the {M\"obius} group}, journal = {Annales Henri Lebesgue}, pages = {259--280}, publisher = {\'ENS Rennes}, volume = {2}, year = {2019}, doi = {10.5802/ahl.14}, zbl = {1428.58008}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.14/} }
Monod, Nicolas; Py, Pierre. Self-representations of the Möbius group. Annales Henri Lebesgue, Tome 2 (2019), pp. 259-280. doi : 10.5802/ahl.14. http://www.numdam.org/articles/10.5802/ahl.14/
[BdlHV08] Kazhdan’s property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008, xiv+472 pages | MR | Zbl
[Bek03] Kazhdan’s property (T) for the unitary group of a separable Hilbert space, Geom. Funct. Anal., Volume 13 (2003) no. 3, pp. 509-520 | DOI | MR | Zbl
[BGS85] Manifolds of nonpositive curvature, Progress in Mathematics, 61, Birkhäuser, 1985, vi+263 pages | MR | Zbl
[BH99] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | MR | Zbl
[BIM05] Equivariant embeddings of trees into hyperbolic spaces, Int. Math. Res. Not. (2005) no. 22, pp. 1331-1369 | DOI | MR | Zbl
[Can11] Sur les groupes de transformations birationnelles des surfaces, Ann. Math., Volume 174 (2011) no. 1, pp. 299-340 | DOI | MR | Zbl
[Gan66] A new model of the hyperbolic plane, Am. Math. Mon., Volume 73 (1966) no. 3, pp. 291-295 | DOI | MR | Zbl
[Gro01]
[Kes51] Automorphisms of the field of complex numbers, Proc. Lond. Math. Soc., Volume 53 (1951), pp. 1-12 | DOI | MR | Zbl
[Leb07] Sur les transformations ponctuelles, transformant les plans en plans, qu’on peut définir par des procédés analytiques (Existrait d’une lettre adressée à M. C. Segre), Torino Atti, Volume 42 (1907), pp. 532-539 | Zbl
[Man86] Cubic forms. Algebra, geometry, arithmetic, North-Holland Mathematical Library, 4, North-Holland Publishing Co., Amsterdam, 1986, x+326 pages (translated from the Russian by M. Hazewinkel)
[Mon18] Notes on functions of hyperbolic type (2018) (https://arxiv.org/abs/1807.04157v1)
[MP14] An exotic deformation of the hyperbolic space, Am. J. Math., Volume 136 (2014) no. 5, pp. 1249-1299 | DOI | MR | Zbl
[Res89] Space mappings with bounded distortion, Translations of Mathematical Monographs, 73, American Mathematical Society, 1989, xvi+362 pages (translated from the Russian by H. H. McFaden) | MR | Zbl
[RR07] On the algebraic structure of the unitary group, Collect. Math., Volume 58 (2007) no. 2, pp. 181-192 | MR | Zbl
[SSV12] Bernstein functions. Theory and applications, De Gruyter Studies in Mathematics, 37, Walter de Gruyter, 2012, xiv+410 pages | Zbl
[Tsa13] Automatic continuity for the unitary group, Proc. Am. Math. Soc., Volume 141 (2013) no. 10, pp. 3673-3680 | DOI | MR | Zbl
Cité par Sources :