On s’intéresse dans cet article à l’équation de Klein–Gordon avec amortissement périodique. On montre sur un cas modèle que si la condition de contrôle géométrique usuelle est satisfaite, la décroissance de l’énergie est uniforme par rapport aux oscillations de l’amortissement, et en particulier la taille des dérivées ne joue aucun rôle. On montre également que sans cette condition géométrique la décroissance polynomiale de l’énergie est même un peu meilleure avec un amortissement fortement oscillant. Pour montrer ces estimées, on donne des versions dépendant d’un paramètre de résultats bien connus en théorie des semi-groupes.
We consider the free Klein–Gordon equation with periodic damping. We show on this simple model that if the usual geometric condition holds then the decay of the energy is uniform with respect to the oscillations of the damping, and in particular the sizes of the derivatives do not play any role. We also show that without geometric condition the polynomial decay of the energy is even slightly better for a highly oscillating damping. To prove these estimates we provide a parameter dependent version of well known results of semigroup theory.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.9
Mots-clés : Damped wave equation, energy decay, resolvent estimates, oscillating damping.
@article{AHL_2018__1__297_0, author = {Royer, Julien}, title = {Energy decay for the {Klein{\textendash}Gordon} equation with highly oscillating damping}, journal = {Annales Henri Lebesgue}, pages = {297--312}, publisher = {\'ENS Rennes}, volume = {1}, year = {2018}, doi = {10.5802/ahl.9}, mrnumber = {3963293}, zbl = {1421.35030}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.9/} }
Royer, Julien. Energy decay for the Klein–Gordon equation with highly oscillating damping. Annales Henri Lebesgue, Tome 1 (2018), pp. 297-312. doi : 10.5802/ahl.9. http://www.numdam.org/articles/10.5802/ahl.9/
[ALM16] Wigner measures and observability for the Schrödinger equation on the disk, Invent. Math., Volume 206 (2016) no. 2, pp. 485-599 | DOI | Zbl
[BEPS06] Polynomial stability of operator semigroups, Math. Nachr., Volume 279 (2006) no. 13-14, pp. 1425-1440 | DOI | MR | Zbl
[BJ16] Exponential decay for the damped wave equation in unbounded domains, Commun. Contemp. Math., Volume 18 (2016) no. 6, 1650012, 27 pages (Art. ID 1650012, 27 pages) | MR | Zbl
[BT10] Optimal polynomial decay of functions and operator semigroups, Math. Ann., Volume 347 (2010) no. 2, pp. 455-478 | DOI | MR | Zbl
[BZ12] Control for Schrödinger operators on tori, Math. Res. Lett., Volume 19 (2012) no. 2, pp. 309-324 | DOI | Zbl
[EN00] One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer, 2000, xxi+586 pages | MR | Zbl
[Gea78] Spectral theory for contraction semigroups on Hilbert space, Trans. Am. Math. Soc., Volume 236 (1978), pp. 385-394 | DOI | MR | Zbl
[Hua85] Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differ. Equations, Volume 1 (1985), pp. 43-56 | MR | Zbl
[Jaf90] Contrôle interne exact des vibrations d’une plaque rectangulaire., Port. Math., Volume 47 (1990) no. 4, pp. 423-429 | Zbl
[JR18] Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation, J. Math. Soc. Japan, Volume 70 (2018) no. 4, pp. 1375-1418 | DOI | MR | Zbl
[Leb96] Équation des ondes amorties, Algebraic and geometric methods in mathematical physics (Mathematical Physics Studies), Volume 19, Kluwer Academic Publishers, 1996, pp. 73-109 | DOI | Zbl
[Prü84] On the spectrum of -semigroups., Trans. Am. Math. Soc., Volume 284 (1984), pp. 847-857 | Zbl
[Roy10] Limiting absorption principle for the dissipative Helmholtz equation, Commun. Partial Differ. Equations, Volume 35 (2010) no. 8, pp. 1458-1489 | DOI | MR | Zbl
[Wun17] Periodic damping gives polynomial energy decay, Math. Res. Lett., Volume 24 (2017) no. 2, pp. 571-580 | DOI | MR | Zbl
[Zwo12] Semiclassical Analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | MR | Zbl
Cité par Sources :