Convergence of the empirical spectral measure of unitary Brownian motion
[Convergence de la mesure spectrale empirique d’un mouvement brownien unitaire]
Annales Henri Lebesgue, Tome 1 (2018), pp. 247-265.

Soit {U t N } t0 un mouvement brownien standard sur 𝕌N. Étant donnés N et t>0, nous donnons des bornes presque sûres explicites sur la distance de Wasserstein L 1 entre la mesure spectrale empirique de U t N et la mesure limite en N. Nos bornes sont assez précises pour permettre l’étude de l’évolution du processus des valeurs propres, en bornant la vitesse de convergence de chemins de mesures sur des intervalles de temps compacts. Les preuves reposent sur des outils développés par le premier auteur pour obtenir des vitesses de convergence sur la mesure spectrale empirique dans des ensembles de matrices aléatoires classiques, ainsi que des estimées récentes sur la vitesse de convergence des moments pour la distribution spectrale moyennée sur l’ensemble.

Let {U t N } t0 be a standard Brownian motion on 𝕌N. For fixed N and t>0, we give explicit almost-sure bounds on the L 1 -Wasserstein distance between the empirical spectral measure of U t N and the large-N limiting measure. The bounds obtained are tight enough that we are able to use them to study the evolution of the eigenvalue process in time, bounding the rate of convergence of paths of the measures on compact time intervals. The proofs use tools developed by the first author to obtain rates of convergence of the empirical spectral measures in classical random matrix ensembles, as well as recent estimates for the rates of convergence of moments of the ensemble-averaged spectral distribution.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.7
Classification : 60B20, 58J65
Mots-clés : Unitary Brownian motion, empirical spectral measure, heat kernel measure, concentration
Meckes, Elizabeth 1 ; Melcher, Tai 2

1 Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44016, USA
2 Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA
@article{AHL_2018__1__247_0,
     author = {Meckes, Elizabeth and Melcher, Tai},
     title = {Convergence of the empirical spectral measure of unitary {Brownian} motion},
     journal = {Annales Henri Lebesgue},
     pages = {247--265},
     publisher = {\'ENS Rennes},
     volume = {1},
     year = {2018},
     doi = {10.5802/ahl.7},
     mrnumber = {3963291},
     zbl = {1419.60007},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ahl.7/}
}
TY  - JOUR
AU  - Meckes, Elizabeth
AU  - Melcher, Tai
TI  - Convergence of the empirical spectral measure of unitary Brownian motion
JO  - Annales Henri Lebesgue
PY  - 2018
SP  - 247
EP  - 265
VL  - 1
PB  - ÉNS Rennes
UR  - http://www.numdam.org/articles/10.5802/ahl.7/
DO  - 10.5802/ahl.7
LA  - en
ID  - AHL_2018__1__247_0
ER  - 
%0 Journal Article
%A Meckes, Elizabeth
%A Melcher, Tai
%T Convergence of the empirical spectral measure of unitary Brownian motion
%J Annales Henri Lebesgue
%D 2018
%P 247-265
%V 1
%I ÉNS Rennes
%U http://www.numdam.org/articles/10.5802/ahl.7/
%R 10.5802/ahl.7
%G en
%F AHL_2018__1__247_0
Meckes, Elizabeth; Melcher, Tai. Convergence of the empirical spectral measure of unitary Brownian motion. Annales Henri Lebesgue, Tome 1 (2018), pp. 247-265. doi : 10.5802/ahl.7. http://www.numdam.org/articles/10.5802/ahl.7/

[AGZ10] Anderson, Greg W.; Guionnet, Alice; Zeitouni, Ofer An Introduction to Random Matrices, Cambridge Studies in Advanced Mathematics, 118, Cambridge University Press, 2010, xiv+492 pages | MR | Zbl

[Bia97a] Biane, Philippe Free Brownian motion, free stochastic calculus and random matrices, Free probability theory (Waterloo, ON, 1995) (Fields Institute Communications), Volume 12, American Mathematical Society, 1997, pp. 1-19 | MR | Zbl

[Bia97b] Biane, Philippe Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems, J. Funct. Anal., Volume 144 (1997) no. 1, pp. 232-286 | DOI | MR | Zbl

[CDK18] Collins, Benoît; Dahlqvist, Antoine; Kemp, Todd The spectral edge of unitary Brownian motion, Probab. Theory Relat. Fields, Volume 170 (2018) no. 1-2, pp. 49-93 | DOI | MR | Zbl

[DHK13] Driver, Bruce K.; Hall, Brian C.; Kemp, Todd The large-N limit of the Segal-Bargmann transform on 𝕌 N , J. Funct. Anal., Volume 265 (2013) no. 11, pp. 2585-2644 | DOI | MR | Zbl

[Gri99] Grigor’yan, Alexander Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Am. Math. Soc., Volume 36 (1999) no. 2, pp. 135-249 | DOI | MR | Zbl

[Gro87] Grove, Karsten Metric differential geometry, Differential geometry (Lyngby, 1985) (Lecture Notes in Mathematics), Volume 1263, Springer, 1987, pp. 171-227 | DOI | MR | Zbl

[Kat04] Katznelson, Yitzhak An introduction to harmonic analysis, Cambridge Mathematical Library, Cambridge University Press, 2004, xviii+314 pages | DOI | MR | Zbl

[Kem15] Kemp, Todd Heat Kernel Empirical Laws on 𝕌 N and 𝔾𝕃 N , J. Theor. Probab., Volume 30 (2015) no. 2, pp. 1-55 | MR | Zbl

[Led99] Ledoux, Michel Concentration of measure and logarithmic Sobolev inequalities, Séminaire de probabilités de Strasbourg XXXIII (Lecture Notes in Mathematics), Volume 1709, Springer, 1999, pp. 120-216 | DOI | MR | Zbl

[LM10] Lévy, Thierry; Maïda, Mylène Central limit theorem for the heat kernel measure on the unitary group, J. Funct. Anal., Volume 259 (2010) no. 12, pp. 3163-3204 | DOI | MR | Zbl

[Lév08] Lévy, Thierry Schur–Weyl duality and the heat kernel measure on the unitary group, Adv. Math., Volume 218 (2008) no. 2, pp. 537-575 | DOI | MR | Zbl

[MM13a] Meckes, Elizabeth S.; Meckes, Mark W. Concentration and convergence rates for spectral measures of random matrices, Probab. Theory Relat. Fields, Volume 156 (2013) no. 1-2, pp. 145-164 | DOI | MR | Zbl

[MM13b] Meckes, Elizabeth S.; Meckes, Mark W. Spectral measures of powers of random matrices, Electron. Commun. Probab., Volume 18 (2013), 78, 13 pages (Art. ID 78, 13 pages) | DOI | MR | Zbl

[MM17] Meckes, Elizabeth S.; Meckes, Mark W. Rates of convergence for empirical spectral measures: a soft approach, Convexity and concentration (The IMA Volumes in Mathematics and its Applications), Volume 161, Springer, 2017, pp. 1-21 | MR | Zbl

[Rai97] Rains, Eric M. Combinatorial properties of Brownian motion on the compact classical groups, J. Theor. Probab., Volume 10 (1997) no. 3, pp. 659-679 | DOI | MR | Zbl

[Riv81] Rivlin, Theodore J. An Introduction to the Approximation of Functions, Dover Books on Advanced Mathematics, Dover Publications, 1981, viii+150 pages (Corrected reprint of the 1969 original) | MR | Zbl

[RV10] Rudelson, Mark; Vershynin, Roman Non-asymptotic theory of random matrices: extreme singular values, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency (2010), pp. 1576-1602 | MR | Zbl

[SC94] Saloff-Coste, Laurent Precise estimates on the rate at which certain diffusions tend to equilibrium, Math. Z., Volume 217 (1994) no. 4, pp. 641-677 | DOI | MR | Zbl

[Vil09] Villani, Cédric Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009, xxii+973 pages | DOI | MR | Zbl

[Xu97] Xu, Feng A random matrix model from two-dimensional Yang-Mills theory, Commun. Math. Phys., Volume 190 (1997) no. 2, pp. 287-307 | DOI | MR | Zbl

Cité par Sources :