Bromberg et Ulcigrai ont construit des fonctions lisses par morceaux sur le cercle pour lesquelles l’ensemble des
Bromberg and Ulcigrai constructed piecewise smooth functions on the circle such that the set of
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.4
@article{AHL_2018__1__127_0, author = {Dolgopyat, Dmitry and Sarig, Omri}, title = {No temporal distributional limit theorem for a.e. irrational translation}, journal = {Annales Henri Lebesgue}, pages = {127--148}, publisher = {\'ENS Rennes}, volume = {1}, year = {2018}, doi = {10.5802/ahl.4}, mrnumber = {3963288}, zbl = {1420.37005}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.4/} }
TY - JOUR AU - Dolgopyat, Dmitry AU - Sarig, Omri TI - No temporal distributional limit theorem for a.e. irrational translation JO - Annales Henri Lebesgue PY - 2018 SP - 127 EP - 148 VL - 1 PB - ÉNS Rennes UR - http://www.numdam.org/articles/10.5802/ahl.4/ DO - 10.5802/ahl.4 LA - en ID - AHL_2018__1__127_0 ER -
Dolgopyat, Dmitry; Sarig, Omri. No temporal distributional limit theorem for a.e. irrational translation. Annales Henri Lebesgue, Tome 1 (2018), pp. 127-148. doi : 10.5802/ahl.4. http://www.numdam.org/articles/10.5802/ahl.4/
[ADDS15] The visits to zero of a random walk driven by an irrational rotation, Isr. J. Math., Volume 207 (2015) no. 2, pp. 653-717 | DOI | MR | Zbl
[ADU93] Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Am. Math. Soc., Volume 337 (1993) no. 2, pp. 495-548 | DOI | MR | Zbl
[AK82] The visits to zero of some deterministic random walks, Proc. Lond. Math. Soc., Volume 44 (1982) no. 3, pp. 535-553 | DOI | MR | Zbl
[Bec94] Probabilistic Diophantine approximation. I. Kronecker sequences, Ann. Math., Volume 140 (1994) no. 1, pp. 109-160 | DOI | MR
[Bec10] Randomness of the square root of 2 and the giant leap. I, Period. Math. Hung., Volume 60 (2010) no. 2, pp. 137-242 | DOI | MR | Zbl
[Bec11] Randomness of the square root of 2 and the giant leap. II, Period. Math. Hung., Volume 62 (2011) no. 2, pp. 127-246 | DOI | MR | Zbl
[BU18] A temporal Central Limit Theorem for real-valued cocycles over rotations, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 54 (2018) no. 4, pp. 2304-2334 | DOI | MR | Zbl
[CK76] Ergodicité d’un flot cylindrique, Séminaire de Probabilités, I (Univ. Rennes, Rennes, 1976), Université Rennes, 1976 (Exp. no. 5, 7 pages) | MR
[DS17a] Quenched and annealed temporal limit theorems for circle rotations (2017) (28 pages, preprint)
[DS17b] Temporal distributional limit theorems for dynamical systems, J. Stat. Phys., Volume 166 (2017) no. 3-4, pp. 680-713 | DOI | MR | Zbl
[DS18] Asymptotic windings of horocycles, Isr. J. Math., Volume 228 (2018) no. 1, pp. 119-176 | DOI | MR | Zbl
[DV86] Estimates for partial sums of continued fraction partial quotients, Pac. J. Math., Volume 122 (1986) no. 1, pp. 73-82 | DOI | MR | Zbl
[HW08] An introduction to the theory of numbers, Oxford University Press, 2008, xxii+621 pages (Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles) | MR
[Jar29] Zur metrischen Theorie der diophantischen Approximationen, Prace Mat.-Fiz., Volume 36 (1929) no. 1, pp. 91-106 | Zbl
[Khi24] Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., Volume 92 (1924) no. 1-2, pp. 115-125 | DOI | MR | Zbl
[Khi63] Continued fractions, P. Noordhoff, Ltd., 1963, iii+101 pages (translated by Peter Wynn) | MR | Zbl
[PS17] Birkhoff sum fluctuations in substitution dynamical systems, Ergodic Theory Dyn. Syst. (2017), 35 pages | DOI | Zbl
[Sch78] A cylinder flow arising from irregularity of distribution, Compos. Math., Volume 36 (1978) no. 3, pp. 225-232 | Numdam | MR | Zbl
[Sul82] Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math., Volume 149 (1982) no. 3-4, pp. 215-237 | DOI | MR | Zbl
- On Birkhoff sums that satisfy no temporal distributional limit theorem for almost every irrational, Annales Henri Lebesgue, Volume 7 (2024), p. 251 | DOI:10.5802/ahl.200
- On the distribution of Sudler products and Birkhoff sums for the irrational rotation, Annales de l'Institut Fourier, Volume 74 (2024) no. 5, p. 2013 | DOI:10.5802/aif.3640
- On the metric upper density of Birkhoff sums for irrational rotations, Nonlinearity, Volume 36 (2023) no. 12, p. 7065 | DOI:10.1088/1361-6544/ad086f
- Cauchy distributions for the integrable standard map, Physics Letters A, Volume 384 (2020) no. 26, p. 126659 | DOI:10.1016/j.physleta.2020.126659
- On Roth type conditions, duality and central Birkhoff sums for i.e.m, arXiv (2019) | DOI:10.48550/arxiv.1901.09191 | arXiv:1901.09191
- A temporal central limit theorem for real-valued cocycles over rotations, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 54 (2018) no. 4 | DOI:10.1214/17-aihp872
Cité par 6 documents. Sources : Crossref, NASA ADS