On considère les équations des ondes non-linéaires défocalisantes sur le tore de dimension deux. On construit des mesures de Gribbs invariantes pour les équation renormalisés au sens de Wick. On prouve ensuite une propriété d’universalité faible pour ces équations renormalisés, en montrant qu’elle apparaissent comme limites d’équations d’ondes non renormalisées avec conditions initiales aléatoires de loi gaussienne.
We consider the defocusing nonlinear wave equations (NLW) on the two-dimensional torus. In particular, we construct invariant Gibbs measures for the renormalized so-called Wick ordered NLW. We then prove weak universality of the Wick ordered NLW, showing that the Wick ordered NLW naturally appears as a suitable scaling limit of non-renormalized NLW with Gaussian random initial data.
Accepté le :
Publié le :
Mots-clés : nonlinear wave equation, nonlinear Klein–Gordon equation, Gibbs measure, Wick ordering, Hermite polynomial, white noise functional, weak universality
@article{AFST_2020_6_29_1_1_0, author = {Oh, Tadahiro and Thomann, Laurent}, title = {Invariant {Gibbs} measures for the 2-$d$ defocusing nonlinear wave equations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1--26}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {1}, year = {2020}, doi = {10.5802/afst.1620}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1620/} }
TY - JOUR AU - Oh, Tadahiro AU - Thomann, Laurent TI - Invariant Gibbs measures for the 2-$d$ defocusing nonlinear wave equations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 1 EP - 26 VL - 29 IS - 1 PB - Université Paul Sabatier, Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1620/ DO - 10.5802/afst.1620 LA - en ID - AFST_2020_6_29_1_1_0 ER -
%0 Journal Article %A Oh, Tadahiro %A Thomann, Laurent %T Invariant Gibbs measures for the 2-$d$ defocusing nonlinear wave equations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 1-26 %V 29 %N 1 %I Université Paul Sabatier, Toulouse %U http://www.numdam.org/articles/10.5802/afst.1620/ %R 10.5802/afst.1620 %G en %F AFST_2020_6_29_1_1_0
Oh, Tadahiro; Thomann, Laurent. Invariant Gibbs measures for the 2-$d$ defocusing nonlinear wave equations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 1, pp. 1-26. doi : 10.5802/afst.1620. http://www.numdam.org/articles/10.5802/afst.1620/
[1] Global flows with invariant (Gibbs) measures for Euler and Navier-Stokes two-dimensional fluids, Commun. Math. Phys., Volume 129 (1990) no. 3, pp. 431-444 | DOI | MR | Zbl
[2] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993) no. 2, pp. 107-156 | DOI | Zbl
[3] Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys., Volume 166 (1994) no. 1, pp. 1-26 | DOI | Zbl
[4] Invariant measures for the D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., Volume 176 (1996) no. 2, pp. 421-445 | DOI | Zbl
[5] Nonlinear Schrödinger equations, Hyperbolic equations and frequency interactions (Park City, UT, 1995) (IAS/Park City Mathematics Series), Volume 5, American Mathematical Society, 1999, pp. 3-157 | DOI | Zbl
[6] Statistical mechanics of the -dimensional focusing nonlinear Schrödinger equation, Commun. Math. Phys., Volume 182 (1996) no. 2, pp. 485-504 | DOI | Zbl
[7] Global infinite energy solutions for the cubic wave equation, Bull. Soc. Math. Fr., Volume 143 (2015) no. 2, pp. 301-313 | DOI | MR | Zbl
[8] Remarks on the Gibbs measures for nonlinear dispersive equations, Ann. Fac. Sci. Toulouse, Math., Volume 27 (2018) no. 3, pp. 527-597 | DOI | MR | Zbl
[9] Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., Volume 173 (2008) no. 3, pp. 449-475 | DOI | MR | Zbl
[10] Random data Cauchy theory for supercritical wave equations. II. A global existence result, Invent. Math., Volume 173 (2008) no. 3, pp. 477-496 | DOI | MR | Zbl
[11] Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal., Volume 196 (2002) no. 1, pp. 180-210 | DOI | MR | Zbl
[12] Wick powers in stochastic PDEs: an introduction, 2006 (Technical Report UTM, 39 pp)
[13] On the Cauchy problem for the Zakharov system, J. Funct. Anal., Volume 151 (1997) no. 2, pp. 384-436 | DOI | MR | Zbl
[14] Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., Volume 133 (1995) no. 1, pp. 50-68 | DOI | MR
[15] Quantum physics. A functional integral point of view, Springer, 1987 | Zbl
[16] Renormalization of the two-dimensional stochastic nonlinear wave equations, Trans. Am. Math. Soc., Volume 370 (2018) no. 10, pp. 7335-7359 | DOI | MR | Zbl
[17] The Hairer-Quastel universality result at stationarity, Stochastic analysis on large scale interacting systems (RIMS Kôkyûroku Bessatsu), Volume B59, Research Institute for Mathematical Sciences, Kyoto, 2016, pp. 101-115 | Zbl
[18] KPZ reloaded, Commun. Math. Phys., Volume 349 (2017) no. 1, pp. 165-269 | DOI | MR | Zbl
[19] A class of growth models rescaling to KPZ, Forum Math. Pi, Volume 6 (2018), e3, 112 pages | MR
[20] Endpoint Strichartz estimates, Am. J. Math., Volume 120 (1998) no. 5, pp. 955-980 | DOI | MR | Zbl
[21] Blowup behaviour for the nonlinear Klein-Gordon equation, Math. Ann., Volume 358 (2014) no. 1-2, pp. 289-350 | DOI | MR | Zbl
[22] Space-time estimates for null forms and the local existence theorem, Commun. Pure Appl. Math., Volume 46 (1993) no. 9, pp. 1221-1268 | DOI | MR | Zbl
[23] Bilinear estimates and applications to nonlinear wave equations, Commun. Contemp. Math., Volume 4 (2002) no. 2, pp. 223-295 | DOI | MR | Zbl
[24] On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., Volume 130 (1995) no. 2, pp. 357-426 | DOI | MR | Zbl
[25] Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger, Commun. Math. Phys., Volume 168 (1995) no. 3, pp. 479-491 Erratum: “Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger”, Commun. Math. Phys. 173 (1995), no. 3, p. 675 | DOI | Zbl
[26] A quartic interaction in two dimensions, Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965), M.I.T. Press, 1966, pp. 69-73
[27] Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on , J. Math. Pures Appl., Volume 105 (2016) no. 3, pp. 342-366 | MR | Zbl
[28] On the Cameron-Martin theorem and almost-sure global existence, Proc. Edinb. Math. Soc., II. Ser., Volume 59 (2016) no. 2, pp. 483-501 | MR | Zbl
[29] On invariant Gibbs measures for the generalized KdV equations, Dyn. Partial Differ. Equ., Volume 13 (2016) no. 2, pp. 133-153 | MR | Zbl
[30] A pedestrian approach to the invariant Gibbs measures for the 2- defocusing nonlinear Schrödinger equations, Stoch. Partial Differ. Equ., Anal. Comput., Volume 6 (2018) no. 3, pp. 397-445 | Zbl
[31] The Euclidean (quantum) field theory, Princeton Series in Physics, Princeton University Press, 1974, xx+392 pages | Zbl
[32] Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conference Series in Mathematics, 106, American Mathematical Society, 2006, xvi+373 pages | Zbl
[33] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | MR | Zbl
Cité par Sources :