On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 1, pp. 149-175.

Nous étudions les singularités minimales des métriques d’un fibre en droites L sur une variété projective lorsque le locus de base stable Y de L est une sous-variété de codimension r1. Sous certaines hypothèses sur le fibre normal et le voisinage de Y, nous donnons une description explicite de la singularité minimale des métriques de L. Nous appliquons ce résultat pour étudier un analogue (co-dimensionnel) plus élevé de l’exemple de Zariski, dans lequel le fibre en droites L n’est pas semi-ample, mais il est nef et gros.

We investigate the minimal singularities of metrics on a big line bundle L over a projective manifold when the stable base locus Y of L is a submanifold of codimension r1. Under some assumptions on the normal bundle and a neighborhood of Y, we give a explicit description of the minimal singularity of metrics on L. We apply this result to study a higher (co-)dimensional analogue of Zariski’s example, in which the line bundle L is not semi-ample, however it is nef and big.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1628
Hosono, Genki 1 ; Koike, Takayuki 2

1 Mathematical Institute, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578 (Japan)
2 Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku Osaka, 558-8585 (Japan)
@article{AFST_2020_6_29_1_149_0,
     author = {Hosono, Genki and Koike, Takayuki},
     title = {On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {149--175},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {1},
     year = {2020},
     doi = {10.5802/afst.1628},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1628/}
}
TY  - JOUR
AU  - Hosono, Genki
AU  - Koike, Takayuki
TI  - On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
SP  - 149
EP  - 175
VL  - 29
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1628/
DO  - 10.5802/afst.1628
LA  - en
ID  - AFST_2020_6_29_1_149_0
ER  - 
%0 Journal Article
%A Hosono, Genki
%A Koike, Takayuki
%T On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 149-175
%V 29
%N 1
%I Université Paul Sabatier, Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1628/
%R 10.5802/afst.1628
%G en
%F AFST_2020_6_29_1_149_0
Hosono, Genki; Koike, Takayuki. On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 1, pp. 149-175. doi : 10.5802/afst.1628. http://www.numdam.org/articles/10.5802/afst.1628/

[1] Boucksom, Sébastien Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | MR | Zbl

[2] Boucksom, Sébastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed Monge-Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl

[3] Camacho, César; Movasati, Hossein Neighborhoods of analytic varieties, Monografías del Instituto de Matemática y Ciencias Afines, 35, Instituto de Matemática y Ciencias Afines; Pontificia Universidad Católica del Perú, 2003, v+90 pages | MR | Zbl

[4] Demailly, Jean-Pierre Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1, International Press, Somerville, MA; Higher Education Press, 2012, viii+231 pages | MR | Zbl

[5] Demailly, Jean-Pierre Complex Analytic and Differential Geometry, 2012 (monograph, available at http://www-fourier.ujf-grenoble.fr/~demailly)

[6] Demailly, Jean-Pierre; Peternell, Thomas; Schneider, Michael Pseudo-effective line bundles on compact Kähler manifolds, Int. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | DOI | Zbl

[7] Fujita, Takao Classification theories of polarized varieties, London Mathematical Society Lecture Note Series, 155, Cambridge University Press, 1990, xiv+205 pages | MR | Zbl

[8] Grauert, Hans Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 | DOI | Zbl

[9] Hironaka, Heisuke; Rossi, Hugo On the equivalence of imbeddings of exceptional complex spaces, Math. Ann., Volume 156 (1964), pp. 313-333 | DOI | MR | Zbl

[10] Koike, Takayuki Minimal singular metrics of a line bundle admitting no Zariski decomposition, Tôhoku Math. J., Volume 67 (2015) no. 2, pp. 297-321 | DOI | MR | Zbl

[11] Koike, Takayuki On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated, Ann. Inst. Fourier, Volume 65 (2015) no. 5, pp. 1953-1967 | DOI | Numdam | MR | Zbl

[12] Koike, Takayuki Higher codimensional Ueda theory for a compact submanifold with unitary flat normal bundle, Nagoya Math. J. (2018), pp. 1-33 | MR | Zbl

[13] Laufer, Henry B. Normal two-dimensional singularities, Annals of Mathematics Studies, 71, Princeton University Press; University of Tokyo Press, 1971, xi+161 pages | MR | Zbl

[14] Lazarsfeld, Robert Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, Springer, 2004 | Zbl

[15] Nakayama, Noboru Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004, xiv+277 pages | MR

[16] Olver, F. W.; Lozier, D. M.; Boisvert, R. F.; Clark, C. W. Digital Library of Mathematical Functions: Online Companion to NIST Handbook of Mathematical Functions (CUP) (2010) (National Insitute of Standards and Technology, http://dlmf.nist.gov)

[17] Rossi, Hugo Strongly pseudoconvex manifolds, Lectures in Modern Analysis and Applications, I, Springer, 1969, pp. 10-29 | MR | Zbl

  • Ning, Jiafu; Wang, Zhiwei; Zhou, Xiangyu On the extension of Kähler currents on compact Kähler manifolds: holomorphic retraction case, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 33 (2024) no. 1, p. 183 | DOI:10.5802/afst.1767

Cité par 1 document. Sources : Crossref