Nous décrivons des résultats récents d’ergodicité quantique sur les grands graphes, et donnons de nouveaux exemples d’applications à des graphes non-réguliers. Nous mentionnons aussi plusieurs questions ouvertes.
We outline some recent proofs of quantum ergodicity on large graphs and give new applications in the context of irregular graphs. We also discuss some remaining questions.
DOI : 10.5802/afst.1609
Mots-clés : Quantum ergodicity, large graphs, delocalization, Anderson model, trees of finite cone type.
@article{AFST_2019_6_28_3_559_0, author = {Anantharaman, Nalini and Sabri, Mostafa}, title = {Recent results of quantum ergodicity on graphs and further investigation}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {559--592}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {3}, year = {2019}, doi = {10.5802/afst.1609}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1609/} }
TY - JOUR AU - Anantharaman, Nalini AU - Sabri, Mostafa TI - Recent results of quantum ergodicity on graphs and further investigation JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 559 EP - 592 VL - 28 IS - 3 PB - Université Paul Sabatier, Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1609/ DO - 10.5802/afst.1609 LA - en ID - AFST_2019_6_28_3_559_0 ER -
%0 Journal Article %A Anantharaman, Nalini %A Sabri, Mostafa %T Recent results of quantum ergodicity on graphs and further investigation %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 559-592 %V 28 %N 3 %I Université Paul Sabatier, Toulouse %U http://www.numdam.org/articles/10.5802/afst.1609/ %R 10.5802/afst.1609 %G en %F AFST_2019_6_28_3_559_0
Anantharaman, Nalini; Sabri, Mostafa. Recent results of quantum ergodicity on graphs and further investigation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Volume spécial en l’honneur de Jean-Pierre OTAL “Low dimensional topology, hyperbolic manifolds and spectral geometry”, Tome 28 (2019) no. 3, pp. 559-592. doi : 10.5802/afst.1609. http://www.numdam.org/articles/10.5802/afst.1609/
[1] Cover time of a random graph with a given degree sequence, Discrete Math., Volume 312 (2012), pp. 3146-3163 | DOI | MR | Zbl
[2] Absolutely continuous spectrum implies ballistic transport for quantum particles in a random potential on tree graphs, J. Math. Phys., Volume 53 (2012) no. 9, 095205, 15 pages | MR | Zbl
[3] Processes on unimodular random networks, Electron. J. Probab., Volume 12 (2007), pp. 1454-1508 corrigena in ibid. 22 (2017), article ID 51 and ibid. 24 (2019), article ID 25 | DOI | MR | Zbl
[4] Non-backtracking random walks mix faster, Commun. Contemp. Math., Volume 9 (2007) no. 4, pp. 585-603 | DOI | MR | Zbl
[5] Reversibility of a simple random walk on periodic trees, Proc. Am. Math. Soc., Volume 138 (2010) no. 3, pp. 1101-1111 | DOI | MR | Zbl
[6] Quantum ergodicity on regular graphs, Commun. Math. Phys., Volume 353 (2017) no. 2, pp. 633-690 | DOI | MR | Zbl
[7] Some relations between the spectra of simple and non-backtracking random walks (2017) (https://arxiv.org/abs/1703.03852)
[8] Quantum ergodicity on large regular graphs, Duke Math. J., Volume 164 (2015) no. 4, pp. 723-765 | DOI | MR | Zbl
[9] Quantum ergodicity for the Anderson model on regular graphs, J. Math. Phys., Volume 58 (2017) no. 9, 091901, 10 pages | MR | Zbl
[10] Poisson kernel expansions for Schrödinger operators on trees, J. Spectr. Theory, Volume 9 (2019) no. 1, pp. 243-268 | DOI | Zbl
[11] Quantum ergodicity on graphs: from spectral to spatial delocalization, Ann. Math., Volume 189 (2019) no. 3, pp. 753-835 | DOI | MR | Zbl
[12] Point spectrum on a quasihomogeneous tree, Pac. J. Math., Volume 147 (1991) no. 2, pp. 231-242 | DOI | MR | Zbl
[13] Local Kesten–McKay law for random regular graphs, Commun. Math. Phys., Volume 369 (2019) no. 2, pp. 523-636 | DOI | MR | Zbl
[14] Unimodular random trees, Ergodic Theory Dyn. Syst., Volume 35 (2015) no. 2, pp. 359-373 | DOI | MR | Zbl
[15] Recurrence of distributional limits of finite planar graphs, Electron. J. Probab., Volume 6 (2001), 23, 13 pages | MR | Zbl
[16] The asymptotic number of unlabelled regular graphs, J. Lond. Math. Soc., Volume 26 (1982), pp. 201-206 | DOI | MR | Zbl
[17] Random graphs, Cambridge Studies in Advanced Mathematics, 73, Cambridge University Press, 2001 | Zbl
[18] A new proof of Friedman’s second eigenvalue Theorem and its extension to random lifts (2015) (https://arxiv.org/abs/1502.04482)
[19] Non-backtracking spectrum of random graphs: community detection and non-regular Ramanujan graphs, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, Berkeley, 2015, pp. 1347-1357 | DOI | Zbl
[20] Mean quantum percolation, J. Eur. Math. Soc., Volume 19 (2017) no. 12, pp. 3679-3707 | DOI | MR | Zbl
[21] Uniform expansion bounds for Cayley graphs of , Ann. Math., Volume 167 (2008) no. 2, pp. 625-642 | DOI | Zbl
[22] Recovery and Rigidity in a Regular Stochastic Block Model (2015) (https://arxiv.org/abs/1507.00930)
[23] Quantum ergodicity and averaging operators on the sphere, Int. Math. Res. Not., Volume 2016 (2016) no. 19, pp. 6034-6064 | DOI | MR | Zbl
[24] On the limit of large girth graph sequences, Combinatorica, Volume 30 (2010) no. 5, pp. 553-563 | DOI | MR | Zbl
[25] Spectral statistics of Erdős–Rényi graphs I: Local semicircle law, Ann. Probab., Volume 41 (2013) no. 3B, pp. 2279-2375 | DOI | Zbl
[26] Relative expanders or weakly relatively Ramanujan graphs, Duke Math. J., Volume 118 (2003) no. 1, pp. 19-35 | DOI | MR | Zbl
[27] A proof of Alon’s second eigenvalue conjecture and related problems, Memoirs of the American Mathematical Society, 195, American Mathematical Society, 2008 | MR | Zbl
[28] Growth and generation in , Ann. Math., Volume 167 (2008) no. 2, pp. 601-623 | MR | Zbl
[29] Absolutely Continuous Spectrum for Multi-type Galton Watson Trees, Ann. Henri Poincaré, Volume 13 (2012) no. 8, pp. 1745-1766 | DOI | MR | Zbl
[30] Absolutely continuous spectrum for random operators on trees of finite cone type, J. Anal. Math., Volume 118 (2012) no. 1, pp. 363-396 | DOI | MR | Zbl
[31] On the spectral theory of trees with finite cone type, Isr. J. Math., Volume 194 (2013), pp. 107-135 | DOI | MR | Zbl
[32] An invitation to trees of finite cone type: random and deterministic operators, Markov Process. Relat. Fields, Volume 21 (2015) no. 3, pp. 557-574 | MR
[33] Extended States in the Anderson Model on the Bethe Lattice, Adv. Math., Volume 133 (1998) no. 1, pp. 163-184 | DOI | MR | Zbl
[34] The localization transition on the Bethe lattice, J. Physique Lett., Volume 44 (1983), pp. 411-414 | DOI
[35] Algebra, Graduate Texts in Mathematics, 211, Springer, 2002 | Zbl
[36] Quantum ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces, Duke Math. J., Volume 166 (2017) no. 18, pp. 3425-3460 | DOI | MR | Zbl
[37] Cutoff on all Ramanujan graphs, Geom. Funct. Anal., Volume 26 (2016) no. 4, pp. 1190-1216 | DOI | MR | Zbl
[38] Not every uniform tree covers Ramanujan graphs, J. Comb. Theory, Volume 74 (1998) no. 2, pp. 202-212 | DOI | MR | Zbl
[39] Ramanujan graphs, Combinatorica, Volume 8 (1988) no. 3, pp. 261-277 | DOI | MR | Zbl
[40] Probability on Trees and Networks, Cambridge Series in Statistical and Probabilistic Mathematics, 42, Cambridge University Press, 2016 | MR | Zbl
[41] Random walks, spectral radii, and Ramanujan graphs, Random walks and geometry (Vienna, 2001), Walter de Gruyter, 2004, pp. 487-500 | MR | Zbl
[42] Non-backtracking random walks and cogrowth of graphs, Can. J. Math., Volume 59 (2007) no. 4, pp. 828-844 | DOI | MR | Zbl
[43] Expansion of Random Graphs: New Proofs, New Results, Invent. Math., Volume 201 (2015) no. 3, pp. 845-908 | DOI | MR | Zbl
[44] Ergodic properties of eigenfunctions, Usp. Mat. Nauk, Volume 29 (1974) no. 6, pp. 181-182 | MR | Zbl
[45] Basic Complex Analysis. A Comprehensive Course in Analysis. Part 2A, American Mathematical Society, 2015 | Zbl
[46] Ergodicité et fonctions propres du laplacien, Commun. Math. Phys., Volume 102 (1985), pp. 497-502 | DOI | Zbl
[47] Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987), pp. 919-941 | MR | Zbl
Cité par Sources :