Recent results of quantum ergodicity on graphs and further investigation
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Volume spécial en l’honneur de Jean-Pierre OTAL “Low dimensional topology, hyperbolic manifolds and spectral geometry”, Tome 28 (2019) no. 3, pp. 559-592.

Nous décrivons des résultats récents d’ergodicité quantique sur les grands graphes, et donnons de nouveaux exemples d’applications à des graphes non-réguliers. Nous mentionnons aussi plusieurs questions ouvertes.

We outline some recent proofs of quantum ergodicity on large graphs and give new applications in the context of irregular graphs. We also discuss some remaining questions.

Publié le :
DOI : 10.5802/afst.1609
Classification : 82B44, 58J5147B80, 60B20
Mots-clés : Quantum ergodicity, large graphs, delocalization, Anderson model, trees of finite cone type.
Anantharaman, Nalini 1 ; Sabri, Mostafa 2

1 Université de Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France.
2 Department of Mathematics, Faculty of Science, Cairo University, Cairo 12613, Egypt and Université Paris Sud XI, UMR 8628 du CNRS, Laboratoire de Mathématique, Bât. 307, 91405 Orsay Cedex, France.
@article{AFST_2019_6_28_3_559_0,
     author = {Anantharaman, Nalini and Sabri, Mostafa},
     title = {Recent results of quantum ergodicity on graphs and further investigation},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {559--592},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 28},
     number = {3},
     year = {2019},
     doi = {10.5802/afst.1609},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1609/}
}
TY  - JOUR
AU  - Anantharaman, Nalini
AU  - Sabri, Mostafa
TI  - Recent results of quantum ergodicity on graphs and further investigation
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2019
SP  - 559
EP  - 592
VL  - 28
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1609/
DO  - 10.5802/afst.1609
LA  - en
ID  - AFST_2019_6_28_3_559_0
ER  - 
%0 Journal Article
%A Anantharaman, Nalini
%A Sabri, Mostafa
%T Recent results of quantum ergodicity on graphs and further investigation
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 559-592
%V 28
%N 3
%I Université Paul Sabatier, Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1609/
%R 10.5802/afst.1609
%G en
%F AFST_2019_6_28_3_559_0
Anantharaman, Nalini; Sabri, Mostafa. Recent results of quantum ergodicity on graphs and further investigation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Volume spécial en l’honneur de Jean-Pierre OTAL “Low dimensional topology, hyperbolic manifolds and spectral geometry”, Tome 28 (2019) no. 3, pp. 559-592. doi : 10.5802/afst.1609. http://www.numdam.org/articles/10.5802/afst.1609/

[1] Abdullah, Mohammed; Cooper, Colin; Frieze, Alan Cover time of a random graph with a given degree sequence, Discrete Math., Volume 312 (2012), pp. 3146-3163 | DOI | MR | Zbl

[2] Aizenman, Michael; Warzel, Simone Absolutely continuous spectrum implies ballistic transport for quantum particles in a random potential on tree graphs, J. Math. Phys., Volume 53 (2012) no. 9, 095205, 15 pages | MR | Zbl

[3] Aldous, David J.; Lyons, Russell Processes on unimodular random networks, Electron. J. Probab., Volume 12 (2007), pp. 1454-1508 corrigena in ibid. 22 (2017), article ID 51 and ibid. 24 (2019), article ID 25 | DOI | MR | Zbl

[4] Alon, Noga; Benjamini, Itai; Lubetzky, Eyal; Sodin, Sasha Non-backtracking random walks mix faster, Commun. Contemp. Math., Volume 9 (2007) no. 4, pp. 585-603 | DOI | MR | Zbl

[5] Altok, Serdar Reversibility of a simple random walk on periodic trees, Proc. Am. Math. Soc., Volume 138 (2010) no. 3, pp. 1101-1111 | DOI | MR | Zbl

[6] Anantharaman, Nalini Quantum ergodicity on regular graphs, Commun. Math. Phys., Volume 353 (2017) no. 2, pp. 633-690 | DOI | MR | Zbl

[7] Anantharaman, Nalini Some relations between the spectra of simple and non-backtracking random walks (2017) (https://arxiv.org/abs/1703.03852)

[8] Anantharaman, Nalini; Le Masson, Etienne Quantum ergodicity on large regular graphs, Duke Math. J., Volume 164 (2015) no. 4, pp. 723-765 | DOI | MR | Zbl

[9] Anantharaman, Nalini; Sabri, Mostafa Quantum ergodicity for the Anderson model on regular graphs, J. Math. Phys., Volume 58 (2017) no. 9, 091901, 10 pages | MR | Zbl

[10] Anantharaman, Nalini; Sabri, Mostafa Poisson kernel expansions for Schrödinger operators on trees, J. Spectr. Theory, Volume 9 (2019) no. 1, pp. 243-268 | DOI | Zbl

[11] Anantharaman, Nalini; Sabri, Mostafa Quantum ergodicity on graphs: from spectral to spatial delocalization, Ann. Math., Volume 189 (2019) no. 3, pp. 753-835 | DOI | MR | Zbl

[12] Aomoto, Kazuhiko Point spectrum on a quasihomogeneous tree, Pac. J. Math., Volume 147 (1991) no. 2, pp. 231-242 | DOI | MR | Zbl

[13] Bauerschmidt, Roland; Huang, Jiaoyang; Yau, Horng-Tzer Local Kesten–McKay law for random regular graphs, Commun. Math. Phys., Volume 369 (2019) no. 2, pp. 523-636 | DOI | MR | Zbl

[14] Benjamini, Itai; Lyons, Russell; Schramm, Oded Unimodular random trees, Ergodic Theory Dyn. Syst., Volume 35 (2015) no. 2, pp. 359-373 | DOI | MR | Zbl

[15] Benjamini, Itai; Schramm, Oded Recurrence of distributional limits of finite planar graphs, Electron. J. Probab., Volume 6 (2001), 23, 13 pages | MR | Zbl

[16] Bollobás, Béla The asymptotic number of unlabelled regular graphs, J. Lond. Math. Soc., Volume 26 (1982), pp. 201-206 | DOI | MR | Zbl

[17] Bollobás, Béla Random graphs, Cambridge Studies in Advanced Mathematics, 73, Cambridge University Press, 2001 | Zbl

[18] Bordenave, Charles A new proof of Friedman’s second eigenvalue Theorem and its extension to random lifts (2015) (https://arxiv.org/abs/1502.04482)

[19] Bordenave, Charles; Lelarge, Marc; Massoulié, Laurent Non-backtracking spectrum of random graphs: community detection and non-regular Ramanujan graphs, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, Berkeley, 2015, pp. 1347-1357 | DOI | Zbl

[20] Bordenave, Charles; Sen, Arnab; Virág, Bálint Mean quantum percolation, J. Eur. Math. Soc., Volume 19 (2017) no. 12, pp. 3679-3707 | DOI | MR | Zbl

[21] Bourgain, Jean; Gamburd, Alex Uniform expansion bounds for Cayley graphs of SL 2 (𝔽 p ), Ann. Math., Volume 167 (2008) no. 2, pp. 625-642 | DOI | Zbl

[22] Brito, Gerandy; Dumitriu, Ioana; Ganguly, Shirshendu; Hoffman, Christopher; Tran, Linh V. Recovery and Rigidity in a Regular Stochastic Block Model (2015) (https://arxiv.org/abs/1507.00930)

[23] Brooks, Shimon; Le Masson, Etienne; Lindenstrauss, Elon Quantum ergodicity and averaging operators on the sphere, Int. Math. Res. Not., Volume 2016 (2016) no. 19, pp. 6034-6064 | DOI | MR | Zbl

[24] Elek, Gábor On the limit of large girth graph sequences, Combinatorica, Volume 30 (2010) no. 5, pp. 553-563 | DOI | MR | Zbl

[25] Erdős, László; Knowles, Antti; Yau, Horng-Tzer; Yin, Jun Spectral statistics of Erdős–Rényi graphs I: Local semicircle law, Ann. Probab., Volume 41 (2013) no. 3B, pp. 2279-2375 | DOI | Zbl

[26] Friedman, Joel Relative expanders or weakly relatively Ramanujan graphs, Duke Math. J., Volume 118 (2003) no. 1, pp. 19-35 | DOI | MR | Zbl

[27] Friedman, Joel A proof of Alon’s second eigenvalue conjecture and related problems, Memoirs of the American Mathematical Society, 195, American Mathematical Society, 2008 | MR | Zbl

[28] Helfgott, Harald Growth and generation in SL 2 (/p), Ann. Math., Volume 167 (2008) no. 2, pp. 601-623 | MR | Zbl

[29] Keller, Matthias Absolutely Continuous Spectrum for Multi-type Galton Watson Trees, Ann. Henri Poincaré, Volume 13 (2012) no. 8, pp. 1745-1766 | DOI | MR | Zbl

[30] Keller, Matthias; Lenz, Daniel; Warzel, Simone Absolutely continuous spectrum for random operators on trees of finite cone type, J. Anal. Math., Volume 118 (2012) no. 1, pp. 363-396 | DOI | MR | Zbl

[31] Keller, Matthias; Lenz, Daniel; Warzel, Simone On the spectral theory of trees with finite cone type, Isr. J. Math., Volume 194 (2013), pp. 107-135 | DOI | MR | Zbl

[32] Keller, Matthias; Lenz, Daniel; Warzel, Simone An invitation to trees of finite cone type: random and deterministic operators, Markov Process. Relat. Fields, Volume 21 (2015) no. 3, pp. 557-574 | MR

[33] Klein, Abel Extended States in the Anderson Model on the Bethe Lattice, Adv. Math., Volume 133 (1998) no. 1, pp. 163-184 | DOI | MR | Zbl

[34] Kunz, H.; Souillard, B. The localization transition on the Bethe lattice, J. Physique Lett., Volume 44 (1983), pp. 411-414 | DOI

[35] Lang, Serge Algebra, Graduate Texts in Mathematics, 211, Springer, 2002 | Zbl

[36] Le Masson, Etienne; Sahlsten, Tuomas Quantum ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces, Duke Math. J., Volume 166 (2017) no. 18, pp. 3425-3460 | DOI | MR | Zbl

[37] Lubetzky, Eyal; Peres, Yuval Cutoff on all Ramanujan graphs, Geom. Funct. Anal., Volume 26 (2016) no. 4, pp. 1190-1216 | DOI | MR | Zbl

[38] Lubotzky, Alexander; Nagnibeda, Tatiana Not every uniform tree covers Ramanujan graphs, J. Comb. Theory, Volume 74 (1998) no. 2, pp. 202-212 | DOI | MR | Zbl

[39] Lubotzky, Alexander; Phillips, Ralph; Sarnak, Peter Ramanujan graphs, Combinatorica, Volume 8 (1988) no. 3, pp. 261-277 | DOI | MR | Zbl

[40] Lyons, Russell; Peres, Yuval Probability on Trees and Networks, Cambridge Series in Statistical and Probabilistic Mathematics, 42, Cambridge University Press, 2016 | MR | Zbl

[41] Nagnibeda, Tatiana Random walks, spectral radii, and Ramanujan graphs, Random walks and geometry (Vienna, 2001), Walter de Gruyter, 2004, pp. 487-500 | MR | Zbl

[42] Ortner, Ronald; Woess, Wolfgang Non-backtracking random walks and cogrowth of graphs, Can. J. Math., Volume 59 (2007) no. 4, pp. 828-844 | DOI | MR | Zbl

[43] Puder, Doron Expansion of Random Graphs: New Proofs, New Results, Invent. Math., Volume 201 (2015) no. 3, pp. 845-908 | DOI | MR | Zbl

[44] Shnirelman, Alexander I. Ergodic properties of eigenfunctions, Usp. Mat. Nauk, Volume 29 (1974) no. 6, pp. 181-182 | MR | Zbl

[45] Simon, Barry Basic Complex Analysis. A Comprehensive Course in Analysis. Part 2A, American Mathematical Society, 2015 | Zbl

[46] Colin de Verdière, Yves Ergodicité et fonctions propres du laplacien, Commun. Math. Phys., Volume 102 (1985), pp. 497-502 | DOI | Zbl

[47] Zelditch, Steven Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987), pp. 919-941 | MR | Zbl

Cité par Sources :