Le but de cet article est de proposer une étude systématique des conditions aux limites transparentes pour les approximations par différences finies d’équations d’évolution. On essaie de maintenir la discussion au plus haut niveau de généralité possible afin d’appliquer la théorie à la plus large classe de problèmes.
On aborde deux problèmes principaux. On construit en premier lieu des conditions aux limites numériques transparentes, c’est-à-dire qu’on exhibe les relations satisfaites par la solution du problème de Cauchy quand les données initiales sont nulles hors d’un certain domaine. Notre construction englobe les discrétisations d’équations de type transport, diffusion ou dispersif avec un « stencil » arbitrairement grand. Le second problème que nous abordons est celui de la stabilité du problème mixte obtenu en imposant les conditions aux limites numériques construites à la première étape. On étudie ici le cas des équations de transport discrétisées. Sous une hypothèse de bord non-caractéristique, notre résultat principal classifie les schémas numériques pour lesquels les conditions aux limites transparentes vérifient la condition dite de Kreiss–Lopatinskii uniforme. En adaptant des travaux antérieurs au cadre non-local considéré ici, notre analyse aboutit finalement à des estimations de trace et de semi-groupe pour les conditions aux limites numériques transparentes. L’article se conclut avec des exemples et de futures extensions possibles.
The aim of this article is to propose a systematic study of transparent boundary conditions for finite difference approximations of evolution equations. We try to keep the discussion at the highest level of generality in order to apply the theory to the broadest class of problems.
We deal with two main issues. We first derive transparent numerical boundary conditions, that is, we exhibit the relations satisfied by the solution to the pure Cauchy problem when the initial condition vanishes outside of some domain. Our derivation encompasses discretized transport, diffusion and dispersive equations with arbitrarily wide stencils. The second issue is to prove sharp stability estimates for the initial boundary value problem obtained by enforcing the boundary conditions derived in the first step. We focus here on discretized transport equations. Under the assumption that the numerical boundary is non-characteristic, our main result characterizes the class of numerical schemes for which the corresponding transparent boundary conditions satisfy the so-called Uniform Kreiss–Lopatinskii Condition. Adapting some previous works to the non-local boundary conditions considered here, our analysis culminates in the derivation of trace and semigroup estimates for such transparent numerical boundary conditions. Several examples and possible extensions are given.
Accepté le :
Publié le :
DOI : 10.5802/afst.1600
Mots-clés : evolution equations, difference approximations, transparent boundary conditions, stability
@article{AFST_2019_6_28_2_259_0, author = {Coulombel, Jean-Fran\c{c}ois}, title = {Transparent numerical boundary conditions for evolution equations: {Derivation} and stability analysis}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {259--327}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {2}, year = {2019}, doi = {10.5802/afst.1600}, zbl = {07095683}, mrnumber = {3957682}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1600/} }
TY - JOUR AU - Coulombel, Jean-François TI - Transparent numerical boundary conditions for evolution equations: Derivation and stability analysis JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 259 EP - 327 VL - 28 IS - 2 PB - Université Paul Sabatier, Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1600/ DO - 10.5802/afst.1600 LA - en ID - AFST_2019_6_28_2_259_0 ER -
%0 Journal Article %A Coulombel, Jean-François %T Transparent numerical boundary conditions for evolution equations: Derivation and stability analysis %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 259-327 %V 28 %N 2 %I Université Paul Sabatier, Toulouse %U http://www.numdam.org/articles/10.5802/afst.1600/ %R 10.5802/afst.1600 %G en %F AFST_2019_6_28_2_259_0
Coulombel, Jean-François. Transparent numerical boundary conditions for evolution equations: Derivation and stability analysis. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 2, pp. 259-327. doi : 10.5802/afst.1600. http://www.numdam.org/articles/10.5802/afst.1600/
[1] A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys., Volume 4 (2008) no. 4, pp. 729-796 | Zbl
[2] Construction, structure and asymptotic approximations of a microdifferential transparent boundary condition for the linear Schrödinger equation, J. Math. Pures Appl., Volume 80 (2001) no. 7, pp. 701-738 | DOI | Zbl
[3] Towards accurate artificial boundary conditions for nonlinear PDEs through examples, Cubo, Volume 11 (2009) no. 4, pp. 29-48 | MR | Zbl
[4] Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability, Commun. Math. Sci., Volume 1 (2003) no. 3, pp. 501-556 | DOI | Zbl
[5] Non-homogeneous boundary value problems for linear dispersive equations, Commun. Partial Differ. Equations, Volume 37 (2012) no. 1, pp. 1-37 | MR | Zbl
[6] Analytic perturbation theory for matrices and operators, Operator Theory: Advances and Applications, 15, Birkhäuser, 1985, 427 pages | MR | Zbl
[7] Multi-dimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Mathematical Monographs, Oxford University Press, 2007, xxv+508 pages | Zbl
[8] Discrete artificial boundary conditions for the linearized Korteweg–de Vries equation, Numer. Methods Partial Differ. Equations, Volume 32 (2016) no. 5, pp. 1455-1484 | DOI | MR | Zbl
[9] Artificial boundary conditions for the linearized Benjamin–Bona–Mahony equation, Numer. Math., Volume 139 (2018) no. 2, pp. 281-314 | DOI | MR | Zbl
[10] Stability of finite difference schemes for hyperbolic initial boundary value problems, SIAM J. Numer. Anal., Volume 47 (2009) no. 4, pp. 2844-2871 | MR | Zbl
[11] Stability of finite difference schemes for hyperbolic initial boundary value problems II, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 10 (2011) no. 1, pp. 37-98 | MR | Zbl
[12] Stability of finite difference schemes for hyperbolic initial boundary value problems, HCDTE lecture notes. Part I. Nonlinear hyperbolic PDEs, dispersive and transport equations (AIMS Series on Applied Mathematics), Volume 6, American Institute of Mathematical Sciences, 2013, pp. 97-225 | MR | Zbl
[13] Fully discrete hyperbolic initial boundary value problems with nonzero initial data, Confluentes Math., Volume 7 (2015) no. 2, pp. 17-47 | MR | Zbl
[14] The Leray–Gårding method for finite difference schemes, J. Éc. Polytech., Math., Volume 2 (2015), pp. 297-331 | MR | Zbl
[15] Semigroup stability of finite difference schemes for multidimensional hyperbolic initial-boundary value problems, Math. Comput., Volume 80 (2011) no. 273, pp. 165-203 | MR | Zbl
[16] On stability of the Crank–Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. I, Commun. Math. Sci., Volume 4 (2006) no. 4, pp. 741-766 | Zbl
[17] Absorbing boundary conditions for hyperbolic systems, Numer. Math., Theory Methods Appl., Volume 3 (2010) no. 3, pp. 295-337 | MR | Zbl
[18] Discrete transparent boundary conditions for the Schrödinger equation, Riv. Mat. Univ. Parma, Volume 4* (2001), pp. 57-108 | Zbl
[19] Convergence of the variable two-step BDF time discretisation of nonlinear evolution problems governed by a monotone potential operator, BIT, Volume 49 (2009) no. 2, pp. 297-323 | MR | Zbl
[20] Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations, Comput. Methods Appl. Math., Volume 9 (2009) no. 1, pp. 37-62 | MR | Zbl
[21] Convolution equations and projection methods for their solution, Translations of Mathematical Monographs, 41, American Mathematical Society, 1974 (Translated from the Russian) | MR | Zbl
[22] On a boundary extrapolation theorem by Kreiss, Math. Comput., Volume 31 (1977) no. 138, pp. 469-477 | MR | Zbl
[23] Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II, Math. Comput., Volume 36 (1981) no. 154, pp. 603-626 | MR | Zbl
[24] Time dependent problems and difference methods, Pure and Applied Mathematics, John Wiley & Sons, 1995, xi+642 pages | Zbl
[25] Stability theory of difference approximations for mixed initial boundary value problems. II, Math. Comput., Volume 26 (1972) no. 119, pp. 649-686 | MR | Zbl
[26] Radiation boundary conditions for the numerical simulation of waves (Acta Numerica), Volume 8, Cambridge University Press, 1999, pp. 47-106 | MR | Zbl
[27] Solving ordinary differential equations. I. Nonstiff problems, Springer Series in Computational Mathematics, 8, Springer, 1993, xv+528 pages | Zbl
[28] Solving ordinary differential equations. II. Stiff and differential-algebraic problems, Springer Series in Computational Mathematics, 14, Springer, 1996, xvi+614 pages | Zbl
[29] Absorbing boundary conditions for the discretization schemes of the one-dimensional wave equation, Math. Comput., Volume 38 (1982) no. 158, pp. 415-429 | MR | Zbl
[30] Absorbing boundary conditions for the multidimensional Klein–Gordon equation, Commun. Math. Sci., Volume 5 (2007) no. 3, pp. 743-764 | MR | Zbl
[31] Perturbation theory for linear operators, Classics in Mathematics, Springer, 1995, xxi+619 pages | Zbl
[32] Stability theory for difference approximations of mixed initial boundary value problems. I, Math. Comput., Volume 22 (1968), pp. 703-714 | MR
[33] Initial boundary value problems for hyperbolic systems, Commun. Pure Appl. Math., Volume 23 (1970), pp. 277-298 | MR | Zbl
[34] Functional analysis, Pure and Applied Mathematics, John Wiley & Sons, 2002, xx+580 pages | Zbl
[35] Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, 92, American Mathematical Society, 2002 (franslated from the French by Andreas Hartmann) | MR | Zbl
[36] Systems of difference equations with general homogeneous boundary conditions, Trans. Am. Math. Soc., Volume 137 (1969), pp. 177-201 | MR | Zbl
[37] Stability of parabolic difference approximations to certain mixed initial boundary value problems, Math. Comput., Volume 26 (1972), pp. 13-39 | MR | Zbl
[38] Difference schemes for the dispersive equation, Computing, Volume 31 (1983) no. 3, pp. 261-267 | DOI | MR
[39] Difference methods for initial-value problems, Interscience Tracts in Pure and Applied Mathematics, 4, John Wiley & Sons, 1967, xiv+405 pages | MR | Zbl
[40] Real and complex analysis, McGraw-Hill Book Co., 1987 | Zbl
[41] On hyperbolic mixed problems, Arch. Ration. Mech. Anal., Volume 18 (1965), pp. 310-334 | MR | Zbl
[42] Trigonometric polynomials and difference methods of maximum accuracy, J. Math. Phys., Volume 41 (1962), pp. 147-154 | Zbl
[43] Wiener-Hopf difference equations, J. Math. Mech., Volume 13 (1964), pp. 85-96 | MR | Zbl
[44] A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions, Linear operators (Warsaw, 1994) (Banach Center Publications), Volume 38, Polish Academy of Sciences, 1997, pp. 339-360 | MR | Zbl
[45] Design of absorbing boundary conditions for Schrödinger equations in , SIAM J. Numer. Anal., Volume 42 (2004) no. 4, pp. 1527-1551 | Zbl
[46] Absorbing boundary conditions for the one-dimensional nonlinear Schrödinger equations, Numer. Math., Volume 103 (2006) no. 1, pp. 103-127 | Zbl
[47] Instability of difference models for hyperbolic initial-boundary value problems, Commun. Pure Appl. Math., Volume 37 (1984) no. 3, pp. 329-367 | MR | Zbl
[48] Fourier analysis of numerical approximations of hyperbolic equations, SIAM Studies in Applied Mathematics, 5, Society for Industrial and Applied Mathematics, 1982, xii+140 pages (With a foreword by Garrett Birkhoff) | MR | Zbl
[49] Numerical solution to a linearized KdV equation on unbounded domain, Numer. Methods Partial Differ. Equations, Volume 24 (2008) no. 2, pp. 383-399 | MR | Zbl
[50] Discrete transparent boundary conditions for parabolic systems, Math. Comput. Modelling, Volume 43 (2006) no. 3-4, pp. 294-309 | MR | Zbl
Cité par Sources :