On étudie les automorphismes réels de degré dynamique
We study dynamical degree
Accepté le :
Publié le :
DOI : 10.5802/afst.1595
@article{AFST_2019_6_28_1_109_0, author = {Zhao, ShengYuan}, title = {Automorphismes loxodromiques de surfaces ab\'eliennes r\'eelles}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {109--127}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {6e s{\'e}rie, 28}, number = {1}, year = {2019}, doi = {10.5802/afst.1595}, zbl = {1419.14070}, mrnumber = {3940794}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/afst.1595/} }
TY - JOUR AU - Zhao, ShengYuan TI - Automorphismes loxodromiques de surfaces abéliennes réelles JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 109 EP - 127 VL - 28 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1595/ DO - 10.5802/afst.1595 LA - fr ID - AFST_2019_6_28_1_109_0 ER -
%0 Journal Article %A Zhao, ShengYuan %T Automorphismes loxodromiques de surfaces abéliennes réelles %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 109-127 %V 28 %N 1 %I Université Paul Sabatier, Toulouse %U https://www.numdam.org/articles/10.5802/afst.1595/ %R 10.5802/afst.1595 %G fr %F AFST_2019_6_28_1_109_0
Zhao, ShengYuan. Automorphismes loxodromiques de surfaces abéliennes réelles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 1, pp. 109-127. doi : 10.5802/afst.1595. https://www.numdam.org/articles/10.5802/afst.1595/
[1] Automorphisms of minimal entropy on supersingular K3 surfaces, J. Lond. Math. Soc., Volume 97 (2018) no. 2, pp. 282-305 | DOI | MR | Zbl
[2] Dynamique des automorphismes des surfaces projectives complexes, C. R. Math. Acad. Sci. Paris, Volume 328 (1999) no. 10, pp. 901-906 | DOI | MR | Zbl
[3] Dynamics of automorphisms of compact complex surfaces, Frontiers in complex dynamics (Princeton Mathematics Series), Volume 51, Princeton University Press, 2014, pp. 463-514 | DOI | MR | Zbl
[4] On the entropy of holomorphic maps, Enseign. Math. (2), Volume 49 (2003) no. 3-4, pp. 217-235 | MR | Zbl
[5] Dynamics on
[6] Dynamics on blowups of the projective plane, Publ. Math., Inst. Hautes Étud. Sci., Volume 105 (2007), pp. 49-89 | DOI | Numdam | MR | Zbl
[7] K3 surfaces, entropy and glue, J. Reine Angew. Math., Volume 658 (2011), pp. 1-25 | DOI | MR | Zbl
[8] cox.tar, Salem number/Coxeter group/K3 surface package, Harvard Dataverse, 2015 | DOI
[9] Automorphisms of projective K3 surfaces with minimum entropy, Invent. Math., Volume 203 (2016) no. 1, pp. 179-215 | DOI | MR | Zbl
[10] The third smallest Salem number in automorphisms of
[11] Salem numbers and automorphisms of complex surfaces, Math. Res. Lett., Volume 19 (2012) no. 2, pp. 475-482 | DOI | MR | Zbl
[12] Salem numbers and automorphisms of abelian surfaces, Osaka J. Math., Volume 54 (2017) no. 1, pp. 1-15 | MR | Zbl
[13] When is an abelian surface isomorphic or isogeneous to a product of elliptic curves ?, Math. Z., Volume 203 (1990) no. 2, pp. 293-299 | DOI | MR | Zbl
[14] Real abelian varieties and the theory of Comessatti, Math. Z., Volume 181 (1982) no. 3, pp. 345-364 | DOI | MR | Zbl
[15] Real algebraic surfaces, Lecture Notes in Mathematics, 1392, Springer, 1989 | MR | Zbl
[16] Rational surface automorphisms with positive entropy, Ann. Inst. Fourier, Volume 66 (2016) no. 1, pp. 377-432 http://aif.cedram.org/item?id=aif_2016__66_1_377_0 | DOI | Numdam | MR | Zbl
[17] Volume growth and entropy, Isr. J. Math., Volume 57 (1987) no. 3, pp. 285-300 | DOI | MR | Zbl
- Salem numbers of automorphisms of K3 surfaces with Picard number 4, Comptes Rendus. Mathématique, Volume 361 (2023) no. G11, p. 1805 | DOI:10.5802/crmath.533
Cité par 1 document. Sources : Crossref