Soit le groupe des points réels d’un groupe algébrique connexe réductif quasi-déployé défini sur . Supposons de plus que soit un groupe classique (symplectique, spécial orthogonal ou unitaire). Nous montrons que les paquets de représentations irréductibles unitaires et cohomologiques définies par Adams et Johnson en 1987 coïncident avec ceux definis plus récemment par J. Arthur dans son travail sur la classification du spectre automorphe discret des groupes classiques (C.-P. Mok pour les groupes unitaires). Pour cela, nous calculons le transfert endoscopique des distributions stables sur supportées par ces paquets vers le groupe tordu en termes de modules standard et nous montrons qu’il est égal à la trace tordue prescrite par Arthur.
Let be the group of real points of a quasi-split connected reductive algebraic group defined over . Assume furthermore that is a classical group (symplectic, special orthogonal or unitary). We show that the packets of irreducible unitary cohomological representations defined by Adams and Johnson in 1987 coincide with the ones defined recently by J. Arthur in his work on the classification of the discrete automorphic spectrum of classical groups (C.-P. Mok for unitary groups). For this, we compute the endoscopic transfer of the stable distributions on supported by these packets to twisted in terms of standard modules and show that it coincides with the twisted trace prescribed by Arthur.
Accepté le :
Publié le :
DOI : 10.5802/afst.1590
@article{AFST_2018_6_27_5_1023_0, author = {Arancibia, Nicol\'as and M{\oe}glin, Colette and Renard, David}, title = {Paquets {d{\textquoteright}Arthur} des groupes classiques et unitaires}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1023--1105}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {6e s{\'e}rie, 27}, number = {5}, year = {2018}, doi = {10.5802/afst.1590}, mrnumber = {3919547}, zbl = {1420.22018}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/afst.1590/} }
TY - JOUR AU - Arancibia, Nicolás AU - Mœglin, Colette AU - Renard, David TI - Paquets d’Arthur des groupes classiques et unitaires JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 1023 EP - 1105 VL - 27 IS - 5 PB - Université Paul Sabatier, Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1590/ DO - 10.5802/afst.1590 LA - fr ID - AFST_2018_6_27_5_1023_0 ER -
%0 Journal Article %A Arancibia, Nicolás %A Mœglin, Colette %A Renard, David %T Paquets d’Arthur des groupes classiques et unitaires %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 1023-1105 %V 27 %N 5 %I Université Paul Sabatier, Toulouse %U http://www.numdam.org/articles/10.5802/afst.1590/ %R 10.5802/afst.1590 %G fr %F AFST_2018_6_27_5_1023_0
Arancibia, Nicolás; Mœglin, Colette; Renard, David. Paquets d’Arthur des groupes classiques et unitaires. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 5, pp. 1023-1105. doi : 10.5802/afst.1590. http://www.numdam.org/articles/10.5802/afst.1590/
[1] The Langlands classification and irreducible characters for real reductive groups, Progress in Mathematics, 104, Birkhäuser, 1992, xii+318 pages | DOI | MR | Zbl
[2] Algorithms for representation theory of real reductive groups, J. Inst. Math. Jussieu, Volume 8 (2009) no. 2, pp. 209-259 | DOI | MR | Zbl
[3] Endoscopic groups and packets of nontempered representations, Compos. Math., Volume 64 (1987) no. 3, pp. 271-309 | MR | Zbl
[4] Paquets d’Arthur des représentations cohomologiques, Institut de Mathématiques de Jussieu (France) (2015) (Ph. D. Thesis https://tel.archives-ouvertes.fr/tel-01192585)
[5] On some problems suggested by the trace formula, Lie group representations, II (College Park, Md., 1982/1983) (Lecture Notes in Mathematics), Volume 1041, Springer, 1984, pp. 1-49 | DOI | MR | Zbl
[6] Intertwining operators and residues. I. Weighted characters, J. Funct. Anal., Volume 84 (1989) no. 1, pp. 19-84 | DOI | MR | Zbl
[7] The -Lefschetz numbers of Hecke operators, Invent. Math., Volume 97 (1989) no. 2, pp. 257-290 | DOI | MR | Zbl
[8] Unipotent automorphic representations : conjectures, Orbites unipotentes et représentations, II Groupes -adiques et réels (Astérisque), Volume 171-172, Société Mathématique de France, 1989, pp. 13-71 | Numdam | MR | Zbl
[9] A stable trace formula III. Proof of the main theorems, Ann. Math., Volume 158 (2003) no. 2, pp. 769-873 | MR | Zbl
[10] The endoscopic classification of representations. Orthogonal and symplectic groups, Colloquium Publications, 61, American Mathematical Society, 2013, xviii+590 pages | MR | Zbl
[11] Unipotent representations of complex semisimple groups, Ann. Math., Volume 121 (1985) no. 1, pp. 41-110 | DOI | MR | Zbl
[12] A proof of Kirillov’s conjecture, Ann. Math., Volume 158 (2003) no. 1, pp. 207-252 | DOI | MR | Zbl
[13] Localisation de -modules, C. R. Math. Acad. Sci. Paris, Volume 292 (1981) no. 1, pp. 15-18 | MR | Zbl
[14] The Hodge conjecture and arithmetic quotients of complex balls, Acta Math., Volume 216 (2016) no. 1, pp. 1-125 | DOI | MR | Zbl
[15] Hodge type theorems for arithmetic manifolds associated to orthogonal groups, Int. Math. Res. Not. (2017) no. 15, pp. 4495-4624 | DOI | MR | Zbl
[16] Automorphic -functions, Automorphic forms, representations and -functions (Corvallis, 1977), Part 2 (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society, 1979, pp. 27-61 | MR | Zbl
[17] Quelques remarques sur les distributions invariantes dans les algèbres de Lie réductives, Noncommutative harmonic analysis (Progress in Mathematics), Volume 220, Birkhäuser, 2004, pp. 119-130 | MR | Zbl
[18] Corps de nombres peu ramifiés et formes automorphes autoduales, J. Am. Math. Soc., Volume 22 (2009) no. 2, pp. 467-519 | DOI | MR | Zbl
[19] Formes automorphes et voisins de Kneser des réseaux de Niemaier (http://gaetan.chenevier.perso.math.cnrs.fr/pub.html) | Zbl
[20] On the vanishing of some non-semisimple orbital integrals, Expo. Math., Volume 28 (2010) no. 3, pp. 276-289 | DOI | MR | Zbl
[21] Level One algebraic cusp forms of classical groups of small rank, Mem. Am. Math. Soc., Volume 237 (2015) no. 1121 | MR | Zbl
[22] Changement de base pour les représentations tempérées des groupes réductifs réels, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982) no. 1, pp. 45-115 | Numdam | MR | Zbl
[23] Twisted endoscopy in miniature (http://people.math.carleton.ca/~mezo/research.html)
[24] The Bruhat order on the involutions of the symmetric group, J. Algebr. Comb., Volume 20 (2004) no. 3, pp. 243-261 | DOI | MR | Zbl
[25] Lie algebra cohomology and the resolution of certain Harish-Chandra modules, Math. Ann., Volume 267 (1984) no. 3, pp. 377-393 | DOI | MR | Zbl
[26] Stable base change of certain derived functor modules, Math. Ann., Volume 287 (1990) no. 3, pp. 467-493 | DOI | MR | Zbl
[27] Intertwining operators for semisimple groups, Ann. Math., Volume 93 (1971), pp. 489-578 | DOI | MR | Zbl
[28] Intertwining operators for semisimple groups. II, Invent. Math., Volume 60 (1980) no. 1, pp. 9-84 | DOI | MR | Zbl
[29] Cohomological induction and unitary representations, Princeton Mathematical Series, 45, Princeton University Press, 1995, xx+948 pages | MR | Zbl
[30] Shimura varieties and -adic representations, Automorphic forms, Shimura varieties, and -functions, Vol. I (Ann Arbor, 1988) (Perspectives in Mathematics), Volume 10, Academic Press, 1990, pp. 161-209 | MR | Zbl
[31] Foundations of twisted endoscopy, Astérisque, 255, Société Mathématique de France, 1999, vi+190 pages | Numdam | MR | Zbl
[32] -indistinguishability for , Can. J. Math., Volume 31 (1979) no. 4, pp. 726-785 | DOI | MR | Zbl
[33] La formule des traces tordue d’après le Friday Morning Seminar, CRM Monograph Series, 31, American Mathematical Society, 2013, xxvi+234 pages (With a foreword by Robert Langlands) | MR | Zbl
[34] On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups (Mathematical Surveys and Monographs), Volume 31, American Mathematical Society, 1989, pp. 101-170 | DOI | MR | Zbl
[35] On the representations of and unitarily induced from derived functor modules, Compos. Math., Volume 140 (2004) no. 4, pp. 1059-1096 | DOI | MR | Zbl
[36] Pattern avoidance and smoothness of closures for orbits of a symmetric subgroup in the flag variety, J. Algebra, Volume 322 (2009) no. 8, pp. 2713-2730 | DOI | MR | Zbl
[37] Tempered spectral transfer in the twisted endoscopy of real groups, J. Inst. Math. Jussieu, Volume 15 (2016) no. 3, pp. 569-612 | DOI | MR | Zbl
[38] Localization and representation theory of reductive Lie groups (http://www.math.utah.edu/~milicic/Eprints/book)
[39] Multiplicité 1 dans les paquets d’Arthur aux places -adiques, On certain -functions (Clay Mathematics Proceedings), Volume 13, American Mathematical Society, 2011, pp. 333-374 | MR | Zbl
[40] Paquets stables des séries discrètes accessibles par endoscopie tordue ; leur paramètre de Langlands, Automorphic forms and related geometry : assessing the legacy of I. I. Piatetski-Shapiro (Contemporary Mathematics), Volume 614, American Mathematical Society, 2014, pp. 295-336 | DOI | MR | Zbl
[41] Endoscopie tordue sur un corps local, Stabilisation de la formule des traces tordue I (Progress in Mathematics), Volume 316, Birkhäuser, 2016, pp. 1-180 | DOI | Zbl
[42] Stabilisation spectrale, Stabilisation de la formule des traces tordue II (Progress in Mathematics), Volume 317, Birkhäuser, 2016, pp. 1145-1255 | DOI
[43] La formule des traces locale tordue, Mem. Am. Math. Soc., Volume 251 (2018) no. 1198, v+183 pages | DOI | MR | Zbl
[44] Endoscopic classification of representations of quasi-split unitary groups, Mem. Am. Math. Soc., Volume 235 (2015) no. 1108, vi+248 pages | DOI | MR | Zbl
[45] The standard sign conjecture on algebraic cycles : the case of Shimura varieties (http://arxiv.org/abs/1408.0461, à paraître dans J. Reine Angew. Math.) | DOI | Zbl
[46] On the unitary dual of real reductive Lie groups and the modules : the strongly regular case, Duke Math. J., Volume 96 (1999) no. 3, pp. 521-546 | DOI | MR | Zbl
[47] Intégrales d’entrelacement et fonctions de Whittaker, Bull. Soc. Math. Fr., Volume 99 (1971), pp. 3-72 | DOI | MR | Zbl
[48] On certain -functions, Am. J. Math., Volume 103 (1981) no. 2, pp. 297-355 | DOI | MR | Zbl
[49] Eisenstein series and automorphic -functions, Colloquium Publications, 58, American Mathematical Society, 2010, vi+210 pages | MR | Zbl
[50] The multiplicity one theorem for , Ann. Math., Volume 100 (1974), pp. 171-193 | DOI | MR
[51] Characters and inner forms of a quasi-split group over , Compos. Math., Volume 39 (1979) no. 1, pp. 11-45 | MR | Zbl
[52] On geometric transfer in real twisted endoscopy, Ann. Math., Volume 176 (2012) no. 3, pp. 1919-1985 | DOI | MR | Zbl
[53] The unitary dual of and , Math. Ann., Volume 258 (1981) no. 2, pp. 113-133 | DOI | MR | Zbl
[54] and , Automorphic forms and -functions II. Local aspects (Contemporary Mathematics), American Mathematical Society, 2009, pp. 285-313 | MR | Zbl
[55] Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula, Ann. Sci. Éc. Norm. Supér., Volume 50 (2017) no. 2, pp. 269-344 | DOI | MR | Zbl
[56] Representations of real reductive Lie groups, Progress in Mathematics, 15, Birkhäuser, 1981, xvii+754 pages | MR | Zbl
[57] Irreducible characters of semisimple Lie groups. IV. Character-multiplicity duality, Duke Math. J., Volume 49 (1982) no. 4, pp. 943-1073 http://projecteuclid.org/euclid.dmj/1077315538 | MR | Zbl
[58] Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. Math., Volume 71 (1983) no. 2, pp. 381-417 | DOI | MR | Zbl
[59] The unitary dual of over an Archimedean field, Invent. Math., Volume 83 (1986) no. 3, pp. 449-505 | DOI | MR | Zbl
[60] Unitary representations with nonzero cohomology, Compos. Math., Volume 53 (1984) no. 1, pp. 51-90 | MR | Zbl
[61] Orbits in the flag variety and images of the moment map for classical groups. I, Represent. Theory, Volume 1 (1997), pp. 329-404 | DOI | MR | Zbl
Cité par Sources :