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Geometric proof of the λ-Lemma

Eric Bedford(1), Tanya Firsova(2)

RÉSUMÉ. — Nous donnons une approche géométrique de la preuve de la
λ-lemma. Nous soulignons, en particulier, le rôle que la pseudoconvexité
joue dans la preuve.

ABSTRACT. — We give a geometric approach to the proof of the λ-lemma.
In particular, we point out the role pseudoconvexity plays in the proof.

1. Introduction

A holomorphic motion in dimension one is a family of injections fλ : A→
Ĉ over a complex manifold Λ � λ. Holomorphic motions first appeared in
[15, 14] where they were used to show that a generic rational map f : Ĉ→ Ĉ
is structurally stable. This notion has since found numerous applications in
holomorphic dynamics and Teichmüller Theory. Its usefulness comes from
the fact that analyticity alone forces strong extendibility and regularity
properties that are referred to as the λ-lemma. Let ∆ be the unit disk in C.

Theorem 1.1.—

• Extension λ-lemma [14], [15] Any holomorphic motion f : ∆×A→
Ĉ extends to a holomorphic motion ∆× Ā→ Ĉ.

• QC λ-lemma [15] The map f(λ, a) is uniformly quasisymmetric
in a.
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Note that when A has interior, f(λ, a) is quasiconformal on the interior.
For many applications it is important to know that a holomorphic motion
can be extended to a holomorphic motion of the entire sphere. Bers &
Royden [5] and Sullivan & Thurston [17] proved that there exists a universal
δ > 0 such that under the circumstances of the Extension λ-lemma, the
restriction of f to the parameter disk ∆δ of radius δ can be extended to
a holomorphic motion ∆δ × Ĉ �→ Ĉ. S;lodkowski [16] proved the strongest
version asserting that δ is actually equal to 1:

λ-lemma [S�lodkowski].— Let A ⊂ Ĉ. Any holomorphic motion f :

∆×A→ Ĉ extends to a holomorphic motion ∆× Ĉ �→ Ĉ.

S;lodkowski’s proof builds on the work by Forstnerič [10] and Šnirel’man
[18]. Astala and Martin [1] gave an exposition of S;lodkowski’s proof from
the point of view of 1-dimensional complex analysis. Chirka [7] gave an
independent proof using solution to ∂̄-equation. (See [13] for a detailed
exposition of Chirka’s proof.) The purpose of this paper is to give a more
geometric approach to the proof of the λ-lemma. We take S;lodkowski’s
approach and replace the major technical part in his proof (closedness, see
[1, Theorem 4.1]) by a geometric pseudoconvexity argument.

The strongest λ-lemma fails when the dimension of the base manifold
is greater than 1, even if the base is topologically contractible. This follows
from the results of Earl-Kra [9] and Hubbard [12].

We give the necessary background on holomorphic motions, pseudocon-
vexity and Hilbert transform in Section 2. In Section 3, we show that the
λ-lemma when A is finite implies the λ-lemma for arbitrary A. We set up
the notations and terminology in Section 4. We state the filling theorem for
the torus, and explain how it implies the finite λ-lemma in Section 5. In
Section 6 we prove Hölder estimates for disks trapped inside pseudoconvex
domains and construct such trapping pseudoconvex domains for “graphical
tori”. We use these estimates to prove the filling theorem in Section 7.

1.1. Acknowledgments

We would like to thank Misha Lyubich, Yakov Eliashberg and the referee
for fruitful discussions and useful suggestions.
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2. Background

2.1. Holomorphic motion

Let ∆ be a unit disk. Let A ⊂ Ĉ. A holomorphic motion of A is a map
f : ∆×A→ Ĉ such that

(1) for fixed a ∈ A, the map λ �→ f(λ, a) is holomorphic in ∆

(2) for fixed λ ∈ ∆, the map a �→ f(λ, a) =: fλ(a) is an injection and

(3) the map f0 is the identity on A.

2.2. Pseudoconvexity

Below we give definitions that are sufficient for our purposes.

A C2 smooth function is (strictly) plurisubharmonic (written (strictly)
psh) if its restriction to every complex line is strictly subharmonic. In co-

ordinates z = (z1, . . . , zn), u(z) is strictly psh if the matrix
(

∂2u
∂zj∂z̄k

)
is

positive definite.

A smoothly bounded domain Ω ⊂ C2 is strictly pseudoconvex if there is
a smooth, strictly psh function ρ in a neighborhood of Ω̄ such that {Ω =
ρ(z) < 0}.

Lemma 2.1.— Let Ωs ⊂ C2 be a family of pseudoconvex domains with
defining functions ρs, s ∈ [0, 1]. We assume that the family ρs is continuous
in s. Let φs : ∆ �→ C2 be a continuous family of holomorphic non-constant
functions that extend continuously to ∆̄. Set Ds := φs(∆). Suppose ∂Ds ⊂
∂Ωs, s ∈ [0, 1]. And suppose Ds ⊂ Ωs, s ∈ [0, 1). Then D1 ⊂ Ω1.

Proof. — Consider the restriction of the functions ρs to Ds. The functions
ρs ◦ φs : ∆ �→ R are subharmonic functions, ρ1 ◦ φ1 is the limit of ρs ◦ φs.
By the hypothesis of the lemma, ρs ◦ φs � 0 on ∆. Therefore, ρ1 ◦ φ1 � 0.
If the maximum value 0 is attained in the interior point, ρ1 ◦ φ1 ≡ 0. It
implies that D1 ⊂ ∂Ω1, which is impossible. Therefore, ρ1 ◦ φ1 < 0 on ∆,
and D1 ⊂ Ω1.

Let M ⊂ C2 be a real two-dimensional manifold. We say that p ∈M is
a totally real point if TpM ∩ iTpM = {0}. M is a totally real manifold if
all its points are totally real. If the manifold M is totally real, it is in fact
homeomorphic to the torus (see [6] and [11]). Assume M ⊂ ∂Ω, then one
can define a characteristic field of directions on M .
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Let p ∈M . Let Hp∂Ω := TpΩ∩ iTpΩ be the holomorphic tangent space.
〈ξp〉 := Hp∂Ω ∩ TpM is called the characteristic direction. We denote by
χ(M,Ω) the characteristic field of directions (see [8, Section 16.1]).

2.3. Hilbert transform

A function u : S1 → C is Hölder continuous with exponent α if there is a
constant A such that for all x, y ∈ S1:

|u(x)− u(y)| < A|x− y|α.

We will consider the space C1,α(S1) of differentiable functions u with α-
Hölder continuous derivative. The norm on the space C1,α(S1) is defined by
the formula:

||u||1,α := sup
x∈S1
|u(x)|+ sup

x∈S1
|u′(x)|+ sup

x�=y∈S1

|u′(x)− u′(y)|
|x− y|α .

There exists a unique harmonic extension uh of the function u to ∆. Let
denote by u∗h the harmonic conjugate of uh, normalized by the condition
uh(0) = 0. The function u∗h extends to S1 = ∂∆ as a Hölder continuous
function with exponent α.

For a function u ∈ C1,α(S1) we define its Hilbert transform Hu to be
the boundary value of the harmonic conjugate function u∗h. By definition,
the function u + iHu extends as a holomorphic function to the unit disk.

Theorem 2.2.— The Hilbert transform H is a bounded linear operator
on C1,α(S1) and Cα(S1).

This Theorem makes it convenient for us to work with the spaces C1,α(S1)
and Cα(S1).

3. Finite λ -lemma

The first step in the proof of the λ-lemma is to reduce it to the λ-lemma
for finitely many points, [15].

Theorem 3.1.— The Finite λ-lemma Assume a1, . . . , an+1 ∈ Ĉ, ai �=
aj for i �= j. Let f : ∆× {a1, . . . , an} → Ĉ be a holomorphic motion. Then

there exists a holomorphic motion f̃ : ∆× {a1, . . . , an+1} → C, so that f̃ is
an extension of f .
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Proof. — [Reduction of the λ-lemma to the finite λ-lemma (assuming the
Extension-λ lemma):] We normalize the holomorphic motion f so that three
points a1, a2, a3 stay fixed. We can assume a1 = 0, a2 = 1, a3 =∞.

Let {an} be a sequence of points that are dense in Ā. Let {zn} be a
sequence of points that are dense in C\Ā. Let fn be a holomorphic motion
of a1, . . . , an, z1, . . . , zn, such that

fn(λ, ai) = f(λ, ai).

The existence of such holomorphic motion follows from the Finite λ-lemma.

For any fixed zn, for k � n and n � 3, maps fk are defined at the point
zn, and functions fk(∗, zn) : ∆ → C\{0, 1} form a normal family. So we
can choose a convergent subsequence fk(∗, zn). Using the diagonal method,
we get a holomorphic motion f̃ , that is well defined for all an and zn and
coincides with f on ai for all i. By the Extension λ-lemma, we extend it
uniquely to the holomorphic motion of Ĉ. By construction, it coincides with
the holomorphic motion f on the set A.

4. Notations and Terminology

We consider C2 with coordinates (λ,w). The horizontal direction is
parametrized by λ, the vertical by w. Throughout the paper we consider
disks of the form

w = g(λ)

that will depend on two different parameters. We will use the following
notations

g : ∆× S1 × [0, t0]→ C2

gtξ(λ) := gt(λ, ξ) := gξ(λ, t) := g(λ, ξ, t).

4.1. Graphical Torus

Let π : C2 → C, π(λ,w) = λ, be the projection to the first coordinate.

We say that a torus Γ ⊂ {∂∆} × C is a graphical torus if for each
λ ∈ ∂∆, Cλ := π−1(λ) ∈ C\{0} is a simple closed curve that has winding
number 1 around 0.

Thus, the vertical slices {Cλ : λ ∈ S1} give a foliation of Γ. We wish to
construct a transverse foliation of Γ. We will consider holomorphic functions
gξ : ∆ → C, which extend continuously to ∆̄ and such that the boundary
γξ := gξ(∂∆) ⊂ Γ. We will construct a family of holomorphic disks such
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that {γξ : ξ ∈ S1} form another foliation of the torus Γ that is transverse
to the original foliation.

Figure 1. — Torus Γ.

4.2. Family of Graphical Tori

Let {Ct
λ : t > 0, λ ∈ ∂∆} be smooth curves, such that

(1) Ct
λ have winding number 1 around 0;

(2) for fixed λ, Ct
λ form a smooth foliation of C\{0};

(3) there exists ε > 0, so that Ct
λ = {|w|2 = t} for t < ε.

Let

Γt = {(λ,w) : λ ∈ ∂∆, w ∈ Ct
λ}.

We set Γ0 = {(λ, 0) : λ ∈ ∂∆}. We refer to Γt, t � 0 as smooth family of
graphical tori, though for t = 0 it degenerates to a circle Γ0. The superscript
t will be applied to indicate the dependence on the torus Γt.

4.3. Holomorphic Transverse Foliation of a Graphical Torus

Let Γ be a graphical torus. Let g : ∆ → C be a holomorphic function that
extends continuously to the closure ∆̄. We say that the function g : ∆̄→ C
defines a holomorphic disk D := {(λ, g(λ)) : λ ∈ ∆} ⊂ C2 with a trace
γ := ∂D.

We will construct foliations of graphical tori by traces of holomorphic
disks. To do this, we will require additional properties:
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We say that a function g : ∆̄× S1 → C defines a holomorphic trans-
verse foliation of a graphical torus Γ if

(1) g is continuous.

(2) for each ξ ∈ S1, we let {γξ := g(λ, ξ) : λ ∈ ∂∆}. The curves γξ are
simple, pairwise disjoint and define a foliation of Γ.

(3) Let gξ(λ) := g(λ, ξ), gξ : ∆→ C is holomorphic, gξ ∈ C1,α(∆̄)

(4) gξ(λ) �= 0, for all ξ ∈ S1, λ ∈ ∆

(5) gξ(λ) �= gη(λ), for every λ ∈ ∆ and distinct ξ, η ∈ S1.

Figure 2. — Holomorphic Transverse Foliation of the Torus Γ.

We will also consider holomorphic transverse foliations of a smooth fam-
ily graphical tori {Γt}. This refers to a smooth family of foliations of graph-
ical tori Γt with the additional assumption that the disks from Γt1 are
disjoint from the disks from Γt2 if t1 �= t2.

In fact the leaves in all of our foliations will be closed, and thus they are
also fibrations by curves.

5. Holomorphic transverse foliations and the Finite λ-lemma

Filling Theorem. — Let Γ be a graphical torus, then there exist a
function g : ∆̄ × S1 → C that defines a holomorphic transverse foliation of
Γ. Moreover, the foliation is unique in the following strong sense: if there is
a function h : ∆̄ → C that defines a holomorphic disk with trace in Γ, and
if h(λ) �= 0 for λ ∈ ∆, then there exists ξ ∈ S1 so that h = gξ.

We need the following slightly stronger statement to deduce the Finite
λ-lemma:
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Filling Theorem′.— Let Γt, t ∈ [0,∞) be a family of graphical tori.
There exists a function g : ∆̄× S1 × [0,∞)→ C that defines a holomorphic
transverse foliation of the family Γt. And the foliation is unique in the above
mentioned strong sense.

The reduction of the Finite λ-lemma to Filling Theorem′ can be found
in [16].

Reduction of the Finite λ-lemma to Filling Theorem′. — Let f be a holo-
morphic motion of the points a1, . . . , an. We need to extend the motion
f to one more point an+1. To achieve that we construct a holomorphic
motion of all of C and pick the leaf that passes through the point an+1.

We normalize the motion so that a1 = 0, f(λ, 0) = 0 for all λ ∈ ∆.
Let λ = reiθ. For each r ∈ [0, 1), eiθ ∈ S1 the derivative ∂f

∂r (λ, ai) defines a
vector vθ(r, ai) in C. We can extend it to a smooth family of vector fields
vθ(r, ·) on C. By integrating the vector field for r ∈ [0, 1) and taking the
union of solutions over ξ ∈ S1, we get a smooth motion g : ∆×C→ C such
that g(λ, ai) = f(λ, ai).

Let Ct
0 be a smooth family of simple curves that foliate C\{0}. We choose

the foliation so that different ai belong to different curves Ct
0. Take r < 1.

Let Sr = {λ : |λ| = r}. Let Ct
λ = g(λ,Ct

0) for λ ∈ Sr.

By Filling Theorem′, there exists a holomorphic motion with the pre-
scribed traces Γt

r = {(λ,Ct
λ) : λ ∈ Sr}. By the uniqueness, it coincides

with f on points a1, . . . , an. By taking the limit as r → 1, we obtain a
holomorphic motion of C that coincides with f on a1, . . . , an.

6. Trapping holomorphic disks inside pseudoconvex domains

The aim of the section is to prove a priori estimates for the derivative of
a disk with the trace in a graphical torus (Corollary 6.8), which is the heart
of our proof of the λ-lemma.

6.1. Estimates for holomorphic disks trapped inside strictly pseu-
doconvex domains

The next theorem is from [4], [3]. We do not use the result of the theorem.
We provide the proof to shed light on the technique we use and put the
results in a general context.

Theorem 6.1.— [4], [3] Let Ω be a strictly pseudoconvex domain, and
let M be a totally real 2-dimensional manifold, M ⊂ ∂Ω. Let g : ∆→ Ω be
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an injective holomorphic function that extends as a C1 smooth function to
the closure ∆̄. Set D = g(∆). Assume that γ := ∂D ⊂ M . Then there is a
constant α = α(M,Ω), so that the angle ∠(Tpγ, ξp) > α is uniformly large,
independently of D.

Lemma 6.2.— Under hypothesis of Theorem 6.1, for every point p ∈ γ,
Tpγ is transverse to the characteristic field of directions χ(M,Ω).

Proof. — Let ρ be a strictly psh function such that Ω = {ρ < 0}. The
function ρ ◦ g : ∆ → R is subharmonic. Let p ∈ ∂∆. By the Hopf Lemma,

the radial derivative ∂(ρ◦g)
∂r (p) > 0. Let ξp be a vector that defines the

characteristic direction in a point p. The normal vector to the disk g(∆) in
a point p is iTpγ. It does not belong to the tangent plane to ∂Ω, so iTpγ is
transverse to iξp. Therefore, Tpγ is transverse to ξp.

Let np be the unit outward normal vector to the hypersurface ∂Ω. The

vectors (ξp, iξp, np, inp) form an orthonormal basis in C2 ≈ R� with respect
to Euclidean inner product (·, ·). The vectors inp and ξp form an orthonor-
mal basis for TpM . Given α, we define a conical neighborhood of ξp:

Kα = {v ∈ TpM : (v, ξp) > α(v, inp)} ⊂ TpM.

Lemma 6.3.— Let Ω be a strictly pseudoconvex domain, and let M ⊂
∂Ω be totally real. There exist α > 0, and a continuous family of strictly
pseudoconvex domains Ωε such that M ⊂ ∂Ωε, and the characteristic fields
of directions χ(M,Ωε) fill the cone-fields Kα.

Proof. — The manifold M separates ∂Ω into two parts (∂Ω)1, (∂Ω)2. Let h
be a smooth function such that

(1) h|M = 0;

(2) h|(∂Ω)1 > 0, h(∂Ω)2 < 0;

(3) ∂h
∂(iξp)

> 0, for each p ∈M .

Let us denote by +n the normal field to the hypersurfaces ρ = const. Since
we can identify TpC2 with C2, we can treat the normal vector field n as
a function defined in a neighborhood of ∂Ω. We use the same letter n for
this function. Let ρε(z) = ρ(z + εh+n), Ωε = {ρε < 0}. Then there exists
δ, so that for |ε| < δ, ρε are plurisubharmonic. Therefore, Ωε are strictly
pseudoconvex, and characteristic fields of directions to Ωε fill the cone field
Kα.
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Proof of Theorem 6.1. — Let D ⊂ Ω, ∂D ⊂ ∂Ω. Then by Lemma 6.3, there
exists a continuous family of strictly pseudoconvex domains Ωε, |ε| < δ
so that their characteristic fields of directions fill Cα, for some α > 0. By
Lemma 2.1, D ⊂ Ωε for |ε| < δ. Therefore, an angle estimate follows.

6.2. Pseudoconvex domains for Graphical Tori

We wish to obtain the angle estimates for graphical tori. Let ηp be a
vector that is tangent to the curve Cλ in a point p. We want to think of
ηp as a characteristic direction. However, a priori a graphical torus Γ does
not belong to a pseudoconvex domain. It belongs to a Levi flat domain
{|λ| = 1} × C. Our strategy is to curve this Levi flat domain to obtain a
family of pseudoconvex domains whose boundaries contain the torus Γ and
so that characteristic directions span a wedge around ηp.

Theorem 6.4. — Let Γ be a graphical torus. Assume that g : ∆ →
C defines a holomorphic disk D with the trace γ ⊂ Γ, g(λ) �= 0. Then
there exists a constant α = α(Γ) > 0 (independent of D) so that the angle
∠(ηp, Tpγ) is bounded below by α independently of D.

We need Lemmas 6.5, 6.6 and 6.7 to prove Theorem 6.4.

Consider a family of the graphical tori Γt, Γ1 = Γ. Let F : S1 × C→ R
be a defining function, F−1(t) = Γt. Let us extend F to a smooth function
F : ∆̄× C→ R, so that F (λ,w) = |w|2 for all λ ∈ ∆̄, |w| � ε. We can also
satisfy the condition F ′w �= 0.

Lemma 6.5. — There exists a function φ : ∆̄ × C → R� 0, so that φ
is smooth, ∆wφ > 0, and restriction of φ to S1 × C defines a foliation of
S1 × C by Γt. We also require that for |λ| = 1 φ−1

λ (1) = Cλ.

Proof. — Let F (λ,w) be the extension defined earlier. Let ρ : R+→ R+ be
an increasing convex function, ρ(0) = 0, ρ(1) = 1. Then φ = ρ ◦ F is also
an extension of a defining function of the foliation as well.

∆w(ρ ◦ F ) =
1

4
ρ′′|Fw|2 +

1

4
ρ′∆wF (6.1)

Since F ′w(λ,w) �= 0, when w �= 0, so that ∆w(ρ ◦ F ) > 0 away from
a neighborhood of w = 0. In a neighborhood of 0, ∆wF = 4. By taking
ρ′(0) > 0, one can insure that ∆(ρ ◦ F ) > 0.

Let us set φ = ρ ◦ F , then φ−1
λ = Cλ.
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Lemma 6.6.— There exists a function ψ : ∆̄×C→ R ∪ {−∞}, so that
ψ is smooth, ∆wψ < 0, and restriction of ψ to S1 ×C defines a foliation of
S1 ×C by Γt. We require that ψ(λ, 0) = −∞ for all λ ∈ ∆̄. We also require
that for |λ| = 1, ψ−1

λ (t) = Cλ.

Proof. — Consider a function ψ = cρ ◦ lnF , where ρ is increasing, concave
function, ρ(−∞) = −∞.

∆w(ρ ◦ lnF ) =
1

4
ρ′′
|Fw|2
F 2

+
1

4
ρ′∆w(lnF )

Since F ′w �= 0 when w �= 0, we can make ∆w(ρ ◦ lnF ) < 0. In a neigh-
borhood of w = 0, ∆w(lnF ) = 0, therefore ∆w(ρ ◦ lnF ) < 0. By choosing
a constant c, we can ensure that ψ−1

λ (1) = Cλ.

Let TΓ be the tangent space of the graphical torus Γ. Let Kα ⊂ TΓ be
the cone field:

Kα := {(p, v) : v ∈ TpT, (v, ηp) > α(v,
∂

∂θ
)}.

K◦α := {(p, v) ∈ Kα : v �= cηp, c ∈ R}
Lemma 6.7.— For a graphical torus Γ, there exist a family of pseudo-

convex domains Ωε, ε ∈ [−δ, 0) ∪ (0, δ] and α > 0, so that Γ ⊂ ∂Ωε and
characteristic directions χ(T,Ωε) fill K◦α.

Proof. — Take

ωε :=
1

ε
(|λ|2 − 1) + φ,

where φ is a function constructed in Lemma 6.5.

Hessωε =

(
1
ε + ∂2φ

∂λ∂λ

∂2φ

∂w∂λ
∂2φ
∂w∂λ ∆wφ

)

For small enough ε, the Hessian is positive definite, so the function ωε

is strictly plurisubharmonic. The domains

Ωε = {(λ,w) : ωε(λ,w) < 1}.

are strictly pseudoconvex for small ε.

Let D be a holomorphic disk with the trace in Γ. The domains Ωε con-
verge to |λ| < 1. Therefore, by Lemma 2.1, the disk D is trapped in Ωε for
all small enough ε.
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For small ε, the function

σε(λ,w) :=
1

ε
(|λ|2 − 1)− ψ

is strictly plurisubharmonic. By the same reasoning, the disks are trapped
in

Σε = {(λ,w) : σε < −1}
when ε is sufficiently small.

Proof of Theorem 6.4. — By Lemma 6.2, the tangent Tpγ is transverse to
characteristic directions. Therefore, the angle estimate follows.

Corollary 6.8.— Let g : ∆ → C define a holomorphic disk with the
trace in Γ, g(λ) �= 0 for λ ∈ ∆. Assume that g ∈ C1(∆̄). Then there exists
C depending only on Γ such that |g′(λ)| < C for all λ ∈ ∆̄. The derivative
estimate stays valid for graphical tori that are small perturbations of Γ.

Proof. — It is enough to estimate g′(λ) for |λ| = 1. Then λ = eiθ, so
|g′λ| = |g′θ|. Let u, v, θ, r be an orthornormal system of coordinates in a
neighborhood of Γ. We assume that u|Γ is a coordinate along Cλ and v, u
are coordinates in λ = const plane. Then g′θ = u′θ and the angle estimate
implies that |u′θ| is uniformly bounded from below.

7. Proof of the Filling Theorem

The proof is by continuity method. At many points we follow the treat-
ment of [1]. For each λ ∈ S1 we can foliate interior of Ct

λ\{0} by simple
smooth curves Cs

λ, s ∈ (0, t) so that

(1) Cs
λ = {|z| = s} for s � ε;

(2) Cs
λ depend smoothly on λ.

Let
Γt = {(λ,w) : λ ∈ S1, w ∈ Ct

λ}
Γ0 = {(λ, 0) : λ ∈ S1}

Γt by definition is a smooth family of graphical tori, Γ1 = Γ. For t � ε,
the tori Γt are foliated by the vertical leaves w = const. We will prove that
the set S of parameters t such that Γt is foliated is open and closed in [0, 1],
so S = [0, 1], and the torus Γ is foliated. Moreover, we will prove that the
foliation is unique in the strong sense.
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Let F : S1×C→ R be a defining function of the foliations Ct
λ. For each

fixed λ,
Ct

λ = {(λ,w) : F (λ,w) = t}.
The function F depends smoothly on λ. We assume that F ′w(λ,w) �= 0 for
w �= 0, λ ∈ S1.

Lemma 7.1. — Assume that the winding number of a curve {γ(λ) :
λ ∈ S1

λ} around 0 is equal to zero. Then the winding number of the curve
{F ′w(λ, γ(λ)) : λ ∈ S1} around 0 is equal to zero.

Proof. — There is a homotopy of the curve γ, G : γ× [0, 1]→ C\{0} so that
G(γ × {0}) = γ, G(γ × {1}) = const. The winding number of the curves
{F ′w(λ, γt(λ)) : λ ∈ S1} around 0 is well defined, so it stays constant. Hence,
it is equal to zero.

7.1. Regularity

Theorem 7.2.— Let Γ be a graphical torus. Let g : ∆̄→ C be a function
that defines a holomorphic disk with the trace g(∂∆) ∈ Γ. Assume g′ ∈
L∞(∆), g �= 0 ∀λ ∈ ∆. Then g ∈ C1,α(∆̄), 0 < α < 1.

Proof. — We include Γ into a family of graphical tori Γt with Γ1 = Γ. Let
F : S1 × C→ R be a defining function for Γt, F−1(t) = Γt. Since the trace
of g is in Γ we have equation:

F (λ, g(λ)) = 1. (7.1)

Let λ = eiθ. Since g′ ∈ L∞(∆), the bounded radial limits exist almost
everywhere. The function g extends to be Cα on the closed disk, and the
partial derivative gθ exist a.e. We differentiate equation (7.1) a.e. with re-
spect to θ and obtain:

λiFλ(λ, g(λ))− Im (Fw(λ, g(λ))g′(λ)λ) = 0. (7.2)

The winding number of {g(λ) : λ ∈ S1} around 0 is zero, and by Lemma
7.1, the winding number of {Fw(λ, g(λ)) : λ ∈ S1} around 0 is zero as well.
Thus we can take the logarithm and obtain

Fw(λ, g(λ)) = ea(λ)+ib(λ).

The left hand-side is α-Hölder continuous, so b(λ) is α-Hölder continuous
function, and so is its Hilbert transform Hb(λ). Thus equation (7.2) becomes

Im
(
λeHb(λ)−ib(λ)g′(λ)

)
= e−a(λ)F ′λ(λ, g(λ))λ

– 13 –
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for almost every θ. Since the right hand side is Cα, so is the left hand side.
Further the left hand side is the imaginary part of an analytic function so
the function λeHb(λ)−ib(λ)g′(λ) itself is Cα. Therefore, g′ ∈ Cα(∆̄).

7.2. Openness

In [2], the stability of foliation by holomorphic disks is proved if one
starts from the standard torus.

Theorem 7.3.— Let Γt be a family of graphical tori, t ∈ [0,∞). Assume
that a function gt0 : ∆̄× S1 → C defines a holomorphic transverse foliation
of a graphical torus Γt0 . Then there exists δ and a function g̃ : ∆̄ × S1 ×
(t0− δ, t0 + δ)→ C that defines a transverse holomorphic foliation of Γt for
|t− t0| < δ.

Proof. — Hilbert transform

H : C1,α(S1)→ C1,α(S1)

is a bounded linear operator. We change the standard normalization Hu(0) =
0 to Hu(1) = 0. We denote by C1,α

R (S1) ⊂ C1,α(S1) be the subspace of real-

valued functions. The curve {gt0ξ (λ), λ ∈ S1} has winding number 0 around

zero, since gt0ξ (λ) �= 0 for λ ∈ ∆. Therefore, by Lemma 7.1, the curve

{Fw(λ, gt0ξ (λ)) : λ ∈ S1} has winding number 0 around 0:

Fw(λ, gt0ξ (λ)) = eaξ(λ)+ibξ(λ),

where αξ(λ), bξ(λ) are Hölder continuous with exponent α. Thus, Hbξ(λ)
is Hölder continuous as well.

Xξ(λ) := eHbξ(λ)−ibξ(λ) is a holomorphic function on ∆ and is propor-
tional to the normal vector to Ct

λ in points (λ, gtξ(λ)).

Functions of the form (u(λ) + iHu(λ))Xξ(λ) give all holomorphic func-
tions that are Hölder continuous up to the boundary with the condition
that (uξ(1) + iHuξ(1))Xξ(1) is proportional to the normal vector to Ct

1 in
a point gtξ(1). There exists an ε such that for each point η ∈ Ct

1, |t− t0| < ε,

there is only one normal vector that intersects Ct
1 in a point η.

The space C0(S1, C1,α(S1)) is a Banach space with the norm

||u|| = sup
ξ∈S1,λ∈S1

|uξ(λ)|+ sup
ξ∈S1,λ∈S1

|u′ξ(λ)|+ sup
ξ∈S1,λ1 �=λ2∈S1

|u′ξ(λ1)− u′ξ(λ2)|
|λ1 − λ2|α

.
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Geometric proof of the λ-Lemma

Consider an operator

F : Rt× C0(S1
ξ , C

1,α
R (S1

λ))→ C0(S1
ξ , C

1,α
R (S1

λ)) :

where F is a function of two variable (t, uξ). We consider function uξ(λ) as
an element of C0(S1

ξ , C
1,α(S1

λ)).

F(t, u) : S1 � (t, ξ)→ F (λ, gξ(λ) + (uξ + iHuξ)Xξ(λ))− t ∈ C1,α(S1
λ)

For 0 < α < 1, H is a bounded linear operator, so F is a continuous mapping
of Banach spaces. Further, when F is considered as a map from R × S1

ξ to

C0,α(S1
λ), it is differentiable, and we compute the differential of F at uξ = 0

in the direction δuξ:

DF(t, 0; δuξ) = eaξ(λ)−Hbξ(λ)δuξ(λ).

Since F(t, 0; δuξ) is an invertible linear operator, we can define ut
ξ as the

unique element of C0(S1
ξ , C

1,α(S1
λ)) satisfying F(t, ut

ξ) = 0. And the function

g̃(λ, ξ, t) = gt0ξ (λ) + ut
ξ(λ) defines a holomorphic transverse foliation and is

of class C1,α on ∆̄. By continuity, for ξ �= η, gtξ(λ) �= gtη(λ) for λ ∈ ∆.

This also gives us the openness for one disk.

Theorem 7.4.— Let Γt, t ∈ I be a family of graphical tori. Let gt0 :
∆̄ → C be a function that defines a holomorphic disk with the trace in
the torus Γt0 . Assume that gt0 ∈ C1,α(∆̄), gt0(λ) �= 0 for λ ∈ ∆. Then
there exists δ and a continuous function g : ∆̄ × (t0 − δ, t0 + δ) → C such
that gt(λ) := g(λ, t) defines a holomorphic disk with the trace in Γt and
gt ∈ C1,α(∆̄), gt(λ) �= 0 for λ ∈ ∆.

7.3. Closedness

Theorem 7.5.— Let Γt, t ∈ [0,∞) be a family of graphical tori. Suppose
that there exists g : ∆̄×S1×[0, t0)→ C that defines a holomorphic transverse
foliation of Γt. Then g can be extended to g : ∆̄×S1×[0, t0]→ C that defines
a holomorphic transverse foliation.

Proof. — By Corollary 6.8, there exists C that depends only on Γt0 so that

|
(
gtξ

)′
| < C for t < t0 close to t0. Since the space of bounded holomorphic

functions on ∆ is compact, we can pass to the limit. Let gt0ξ be the limits,

|
(
gt0ξ

)′
| � C. By Regularity Theorem 7.2, gt0ξ ∈ C1,α(∆̄).

This also give us closedness for a family of disks.
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Theorem 7.6.— Let Γt, t ∈ [0,∞) be a family of graphical tori. Assume
that g : ∆̄ × [0, t0) → C is a continuous function such that gt(λ) := g(λ, t)
defines a holomorphic disk with the trace in Γt, gt ∈ C1,α(∆̄), gt(λ) �= 0 for
λ ∈ ∆. Then g can be extended to a continuous g : ∆̄× [0, t0]→ C such that
gt0 defines a holomorphic disk with the trace in Γt0 , gt0(λ) �= 0 for λ ∈ ∆.

7.4. Uniqueness

Let Γc = {(λ,w) : |w| = c, |λ| = 1} be standard tori. Let g : ∆ → C be
a function that defines a holomorphic disk with the trace of g(∂∆) ∈ Γc.
By the Minimum Modulus Theorem, min of g is attained on the boundary.
Maximum modulus is attained on the boundary as well. So |g(λ)| = const.
Therefore, g(λ) = const.

Theorem 7.7.— Let Γ be a graphical torus. Let g, h : ∆̄ → C be func-
tions that define holomorphic disks with traces in Γ, g(λ) �= 0, h(λ) �=
0 for λ ∈ ∆. Assume that g(1) = h(1). Then there exists ε such that
|g(λ)− h(λ)| < ε forλ ∈ S1 implies g(λ) ≡ h(λ).

Note that the same ε works for tori close to Γ.

Proof. —

Let a(λ, s) = F (λ, g(λ) + s(h(λ)− g(λ))), a(λ, 0) = a(λ, 1) = t. Then

∫ 1

0

asds = 0 = Re(h(λ)− g(λ))

∫ 1

0

Fw

(
g(λ) + s(h(λ)− g(λ))

)
ds. (7.3)

The winding number of the curve {g(λ) : λ ∈ S1} around 0 is equal to
zero. Hence, by Lemma 7.1, the winding number of

{Fw(λ, g(λ)) : λ ∈ S1}

around 0 is equal to zero.

Therefore, for small enough ε, the winding number of the curve

{∫ 1

0

Fw (g(λ) + s(h(λ)− g(λ)) ds : λ ∈ S1

}

around 0 is equal to zero, so

∫ 1

0

Fw

(
g(λ) + s(h(λ)− g(λ))

)
ds = ea(λ)+ib(λ).
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Geometric proof of the λ-Lemma

The function b(λ) is a bounded Hölder continuous function.

By equation (7.3), arg (g(λ)− h(λ)) = π
2 −b(λ), where b(λ) is a bounded

function. It contradicts the fact that g(1)− h(1) = 0.

7.5. Global Uniqueness

Theorem 7.8. — Let Γ be a graphical torus. Let g1, h1 : ∆̄ → C be
functions that define holomorphic disks with traces in Γ, g1, h1 ∈ C1,α(∆̄).
Assume that g1(1) = h1(1). Then g1(λ) = h1(λ).

Proof. — We include torus Γ into a family of graphical tori Γt, t ∈ [0, 1],
Γ1 = Γ. By Theorems 7.4, 7.6, there exist functions g, h : ∆̄ × [0, 1] → C
such that g(λ, 1) = g1, h(λ, 1) = h1 and gt(λ) := g(λ, t) define holomorphic
disks with the traces in tori Γt, . There exists ε such that for t < ε, Γt =
{(λ,w) : |w| = t, λ ∈ S1

λ}, t ∈ [0, 1] are standard tori with uniqueness of
solutions. For t < ε, gt ≡ ht. Let t0 = sup{t : ht ≡ gt}. If t0 �= 1, then by
applying Theorem 7.7, we get a contradiction.

At this point we have proved the Filling theorem. For Filling Theorem′

the only statement remains is to show that disks for Γt1 are disjoint from
disks for Γt2 when t1 �= t2. Suppose Dtj is a disk with boundary in Γtj .
If Dt1 ∩ Dt2 �= ∅, then since the traces are in Γt1 and Γt2 we will have
Dt1

ξ1
∩Dt1

ξ2
�= ∅ for all ξ1, ξ2 ∈ S1. By Filling Theorem, the disks Dt1

ξ1
∩Dt1

ξ2
= ∅

for ξ1 �= ξ2. However, there is a continuous family of disks Dt
ξ, t ∈ [t1, t2],

which is a contradiction.
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