Regularization in L1 for the Ornstein-Uhlenbeck semigroup
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 1, pp. 191-204.

Soit γn la mesure Gaussienne standard sur n et soit (Qt) le semi-groupe d’Ornstein-Uhlenbeck. Eldan et Lee ont montré récemment que pour toute fonction positive f d’intégrale 1 et pour temps t la queue de distribution de Qtf vérifie

γn({Qtf>r})Ct(loglogr)4rlogr,r>1

Ct est une constante dépendant seulement de t et pas de la dimension. L’objet de cet article est de simplifier en partie leur démonstration et d’éliminer le facteur (loglogr)4.

Let γn be the standard Gaussian measure on n and let (Qt) be the Ornstein-Uhlenbeck semigroup. Eldan and Lee recently established that for every non-negative function f of integral 1 and any time t the following tail inequality holds true:

γn({Qtf>r})Ct(loglogr)4rlogr,r>1

where Ct is a constant depending on t but not on the dimension. The purpose of the present paper is to simplify parts of their argument and to remove the (loglogr)4 factor.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1492
Lehec, Joseph 1

1 CEREMADE (UMR CNRS 7534) Université Paris–Dauphine.
@article{AFST_2016_6_25_1_191_0,
     author = {Lehec, Joseph},
     title = {Regularization in $L_1$ for the {Ornstein-Uhlenbeck} semigroup},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {191--204},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 25},
     number = {1},
     year = {2016},
     doi = {10.5802/afst.1492},
     mrnumber = {3485296},
     zbl = {1336.60032},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1492/}
}
TY  - JOUR
AU  - Lehec, Joseph
TI  - Regularization in $L_1$ for the Ornstein-Uhlenbeck semigroup
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2016
SP  - 191
EP  - 204
VL  - 25
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1492/
DO  - 10.5802/afst.1492
LA  - en
ID  - AFST_2016_6_25_1_191_0
ER  - 
%0 Journal Article
%A Lehec, Joseph
%T Regularization in $L_1$ for the Ornstein-Uhlenbeck semigroup
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2016
%P 191-204
%V 25
%N 1
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1492/
%R 10.5802/afst.1492
%G en
%F AFST_2016_6_25_1_191_0
Lehec, Joseph. Regularization in $L_1$ for the Ornstein-Uhlenbeck semigroup. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 1, pp. 191-204. doi : 10.5802/afst.1492. https://www.numdam.org/articles/10.5802/afst.1492/

[1] Ball (K.), Barthe (F.), Bednorz (W.), Oleszkiewicz (K.), Wolff (P.).— L1-smoothing for the Ornstein-Uhlenbeck semigroup, Mathematika 59, no. 1, p. 160-168 (2013). | DOI | Zbl

[2] Eldan (R.), Lee (J.).— Regularization under diffusion and anti-concentration of temperature, arXiv:1410.3887. | DOI | MR

[3] Gross (L.).— Logarithmic Sobolev inequalities, Amer. J. Math. 97, no. 4, p. 1061-1083 (1975). | DOI | MR | Zbl

[4] Lehec (J.).— Representation formula for the entropy and functional inequalities, Ann. Inst. Henri Poincaré Probab. Stat. 49, no. 3, p. 885-899 (2013). | DOI | Numdam | MR | Zbl

[5] Liptser (R.), Shiryaev (A.).— Statistics of random processes., Vol I, general theory. 2nd edition, Stochastic Modelling and Applied Probability, Springer-Verlag, Berlin (2001). | DOI

[6] Nelson (E.).— The free Markoff field. J. Functional Analysis 12, p. 211-227 (1973). | DOI | MR | Zbl

[7] Talagrand (M.).— A conjecture on convolution operators, and a non-Dunford-Pettis operator on L1, Israel J. Math. 68, no. 1, p. 82-88 (1989). | DOI | Zbl

  • Bez, Neal; Nakamura, Shohei; Tsuji, Hiroshi Stability of hypercontractivity, the logarithmic Sobolev inequality, and Talagrand's cost inequality, Journal of Functional Analysis, Volume 285 (2023) no. 10, p. 110121 | DOI:10.1016/j.jfa.2023.110121
  • Gozlan, N.; Li, Xue-Mei; Madiman, M.; Roberto, C.; Samson, P.-M. Log-Hessian and Deviation Bounds for Markov Semi-Groups, and Regularization Effect in L1, Potential Analysis, Volume 58 (2023) no. 1, p. 123 | DOI:10.1007/s11118-021-09934-z
  • Chen, Xin; Li, Xue-Mei; Wu, Bo Logarithmic heat kernel estimates without curvature restrictions, The Annals of Probability, Volume 51 (2023) no. 2 | DOI:10.1214/22-aop1599
  • Casarino, Valentina; Ciatti, Paolo; Sjögren, Peter On the maximal operator of a general Ornstein–Uhlenbeck semigroup, Mathematische Zeitschrift, Volume 301 (2022) no. 3, p. 2393 | DOI:10.1007/s00209-022-02986-w
  • Bogachev, V. I.; Shaposhnikov, A. V.; Shaposhnikov, S. V. Log-Sobolev-type inequalities for solutions to stationary Fokker–Planck–Kolmogorov equations, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 5 | DOI:10.1007/s00526-019-1625-x
  • Gozlan, N.; Madiman, M.; Roberto, C.; Samson, P. M. Deviation Inequalities for Convex Functions Motivated by the Talagrand Conjecture, Journal of Mathematical Sciences, Volume 238 (2019) no. 4, p. 453 | DOI:10.1007/s10958-019-04249-2
  • Bogachev, Vladimir Igorevich Операторы и полугруппы Орнштейна-Уленбека, Успехи математических наук, Volume 73 (2018) no. 2(440), p. 3 | DOI:10.4213/rm9812

Cité par 7 documents. Sources : Crossref