Le but de ce travail est d’étudier une possibilité éventuelle d’adapter la conjecture de Manin-Mumford au cadre des
The aim of this work is to investigate a possible adaptation of the Manin-Mumford conjecture to the
Accepté le :
Publié le :
DOI : 10.5802/afst.1491
@article{AFST_2016_6_25_1_171_0, author = {Demangos, Luca}, title = {Some examples toward a {Manin-Mumford} conjecture for abelian uniformizable $T-$modules}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {171--190}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 25}, number = {1}, year = {2016}, doi = {10.5802/afst.1491}, mrnumber = {3485295}, zbl = {1346.14113}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1491/} }
TY - JOUR AU - Demangos, Luca TI - Some examples toward a Manin-Mumford conjecture for abelian uniformizable $T-$modules JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2016 SP - 171 EP - 190 VL - 25 IS - 1 PB - Université Paul Sabatier, Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1491/ DO - 10.5802/afst.1491 LA - en ID - AFST_2016_6_25_1_171_0 ER -
%0 Journal Article %A Demangos, Luca %T Some examples toward a Manin-Mumford conjecture for abelian uniformizable $T-$modules %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2016 %P 171-190 %V 25 %N 1 %I Université Paul Sabatier, Toulouse %U http://www.numdam.org/articles/10.5802/afst.1491/ %R 10.5802/afst.1491 %G en %F AFST_2016_6_25_1_171_0
Demangos, Luca. Some examples toward a Manin-Mumford conjecture for abelian uniformizable $T-$modules. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 1, pp. 171-190. doi : 10.5802/afst.1491. http://www.numdam.org/articles/10.5802/afst.1491/
[1] Anderson (G.).— t-motives, Duke Math. Journal, 53, p. 457-502 (1986). | DOI | Zbl
[2] Anderson (G.), Thakur (D.).— Tensor powers of the Carlitz module and zeta values, Annals of Mathematics (2), 132(1) p. 159-191 (1990). | DOI | MR | Zbl
[3] Bombieri (E.), Pila (J.).— The number of integral points on arcs and ovals, Duke Math. J. 59, p. 337-357 (1989). | DOI | MR | Zbl
[4] Demangos (L.).— Minoration de hauteurs canoniques et conjecture de Manin-Mumford, PhD thesis, 05/12/2012, Université Lille 1, http://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/70119b1e-9077-4227-a591-f11c79d2952c
[5] Demangos (L.).— T-modules and Pila-Wilkie estimates, Journal of Number Theory, issue n. 154C, p. 201-277 (2015). | DOI | MR | Zbl
[6] Denis (L.).— Problèmes diophantiens sur les
[7] Denis (L.).— Géométrie Diophantienne sur les Modules de Drinfeld, Proceedings of the Workshop at the Ohio State University, June p. 17-26 (1991). | DOI
[8] Dion (S.).— Analyse diophantienne et modules de Drinfeld, PhD thesis, Université Lille 1, 17/05/2002, http://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/9efed3d8-cc56-4737-99e4-2e9b672968f5
[9] Drinfeld (V.G.).— Langlands conjecture for GL(2) over function field, Proc. of Int. Congress of Math. (Helsinki), p. 565-574 (1978).
[10] Drinfeld (V.G.).— Moduli varieties of F-sheaves, Funct. Anal. Appl. 21, p. 107-122 (1987). | DOI
[11] Faltings (G.).— The general case of S. Lang’s conjecture, Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), p. 175-182, Perspect. Math., 15, Academic Press, San Diego, CA (1994). | DOI | Zbl
[12] Ghioca (D.).— The Mordell-Lang theorem for Drinfeld modules, Int. Math. Res. Not., n. 53, p. 3273-3307 (2005). | Zbl
[13] Goss (D.).— Basic structures of function field arithmetic, Springer (1996). | DOI
[14] Hindry (M.).— Autour d’une conjecture de Serge Lang, Invent. Math. 94, p. 575-603 (1988). | DOI | MR | Zbl
[15] Lafforgue (L.).— Chtoucas de Drinfeld et correspondence de Langlands, Invent. Math. 147, p. 1-241 (2002). | DOI | MR | Zbl
[16] Laurent (M.).— Equations diophantiennes exponentielles, Invent. Math. 78, p. 299-327 (1984). | DOI | Zbl
[17] Pila (J.).— Integer points on the dilatation of a subanalytic surface, Quart. J. Math. vol. 55 Part 2, Oxford University Press (2004). | DOI | MR
[18] Pila (J.), Wilkie (J.).— The rational points of a definable set, Duke Mathematical Journal, vol. 133, n. 3 (2006). | DOI | MR
[19] Pila (J.), Zannier (U.).— Rational points in periodic analytic sets and the Manin-Mumford conjecture, Comptes Rendus Mathematique, vol. 346, Issues 9-10, May, p. 491-494 (2008).
[20] Pink (R.).— The Mumford-Tate Conjecture for Drinfeld modules, Publ. Res. Inst. Math. Sci. Kyoto Univ. 33, p. 393-425 (1997). | DOI | MR | Zbl
[21] Raynaud (M.).— Courbes sur une varieté abelienne et points de torsion, Inventiones Mathematicae, 71, n. 1, p. 207-233 (1983). | DOI | Zbl
[22] Raynaud (M.).— Sous-varieté d’une variété abélienne et points de torsion, Arithmetic and Geometry, vol. I, Birkhauser (1983). | DOI | Zbl
[23] Ribenboim (P.).— L’Arithmétique des Corps, Hermann, Paris (1972).
[24] Scanlon (T.).— Diophantine Geometry of a torsion of a Drinfeld Module, Journal of Number Theory, vol. 97, n. 1, p. 10-25 (2002). | DOI | MR | Zbl
[25] Scanlon (T.).— A Drinfeld module version of the Mordell-Lang conjecture, Arizona Winter School 2003, 17-19 March 2003, available at https://math.berkeley.edu/ scanlon/papers/an3.pdf
[26] Shiota (M.).— Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser (1997). | DOI
[27] Thiery (A.).— Théorème de Lindemann-Weierstrass pour les modules de Drinfeld, Comp. Math. 95, no.1, p. 1-42 (1995). | Zbl
[28] Fresnel (J.), van der Put (M.).— Rigid analytic geometry and its applications, Progress in Math., Birkhauser (2004). | DOI
[29] van der Put (M.), Schneider (P.).— Points and topology in rigid geometry, Math. Ann. 302, no.1, p. 81-103 (1995). | DOI | MR
[30] Wintenberger (J. P.).— Démonstration d’une conjecture de Lang dans des cas particuliers, Journal für die Reine und Angewandte Mathematik 553, p. 1-16 (2002). | DOI | Zbl
[31] Yu (J.).— Homomorphisms into Drinfeld modules, The Annals of Mathematics, Second Series, vo. 145, no. 2 (march), p. 215-233 (1997). | DOI | MR | Zbl
Cité par Sources :