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Smooth foliations
on homogeneous compact Kähler manifolds

Federico Lo Bianco(1), Jorge Vitório Pereira(2)

RÉSUMÉ. — Nous étudions les feuilletages lisses de codimension ar-
bitraire sur les variétés kähleriennes compactes homogènes. Nous mon-
trons que les feuilletages lisses sur les variétés kähleriennes compactes
homogènes rationnelles cöıncident avec les fibrations localement triviales
et nous classifions les feuilletages lisses dont toutes les feuilles sont an-
alytiquement denses sur les variétés kähleriennes compactes homogènes.
Les deux résultats sont basés sur un théorème de structure grossière pour
les feuilletages lisses sur les variétés kähleriennes compactes homogènes
obtenu par comparaison du feuilletage avec la décomposition de Borel-
Remmert de l’espace ambiant.

ABSTRACT. — We study smooth foliations of arbitrary codimension on
homogeneous compact Kähler manifolds. We prove that smooth foliations
on rational compact homogeneous manifolds are locally trivial fibrations
and classify the smooth foliations with all leaves analytically dense on
compact homogeneous Kähler manifolds. Both results are built upon a
(rough) structure Theorem for smooth foliations on compact homogeneous
Kähler manifolds obtained by comparison of the foliation with the Borel-
Remmert decomposition of the ambient space.

(∗) Reçu le 16/02/2015, accepté le 16/06/2015
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1. Introduction

1.1. Motivation

Smooth codimension one foliations on compact homogeneous manifolds
have been studied by Ghys in [7]. When the ambient manifold is a compact
homogeneous Kähler manifold, a classification is given in [7, Theorem 1.2].
In particular, if the ambient is a compact complex torus X then the foliation
is either a linear on foliation on X, or X admits a projection π : X → E to
an elliptic curve and F is transverse to the general fiber of π.

In this work we investigate smooth foliations of arbitrary codimension
on compact homogeneous Kähler manifolds. At the beginning of our inves-
tigations we were aiming at a classification result similar to what we have in
codimension one, but soon it became apparent that already in codimension
two the situation is considerably more involved. We arrived at the example
below, as well as at the other examples presented in Section 5, after reading
[10].

Example 1.1.— Let Y be a compact homogeneous Kähler manifold and G
be a one dimensional foliation on Y with isolated singularities. Assume there
exists a section σ ∈ H0(Y, T ∗G) which does not vanish on sing(G). Then if
we take an arbitrary compact complex torus A and choose an arbitrary
vector field v on A we can define an injective morphism

π∗Y TG −→ TX = π∗Y TY ⊕ π∗ATA
w �−→ (w, σ(w)v)

where πY and πA are the projections from X = Y × A onto Y and A
respectively. The image of this morphism defines a smooth foliation F on
the compact homogeneous Kähler manifold X = Y ×A with dynamics and
geometry at least as complicated as the ones of G. For instance, when Y is
a projective space then according to [8, Theorem A] we can choose G to be
minimal (every leaf is dense) and ergodic (every measurable set of leaves
has either zero or total Lebesgue measure). Moreover, minimal foliations are
also known to exist on arbitrary projective manifolds [11, Theorem 1.2].

In the example above the fact that we started with a dimension one
foliation with isolated singularities is not really important. We could use di-
mension one foliations with non-isolated singularities. The important thing
to carry out the construction is to have sufficiently many independent sec-
tions of T ∗G in order to generate a subbundle of TX over sing(G).
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If we start with a foliation G of dimension at least two, then general-
izations of the above example are less obvious since we have to take into
account the integrabilty condition.

1.2. Rough structure

Our first result is inspired by a Theorem of Brunella concerning the
structure of (singular) codimension one foliations on complex tori, see [3].

Theorem A.— Let F be a smooth foliation on a homogeneous compact
Kähler manifold X. Then there exists

(1) a locally trivial fibration ρ : X → X ′ onto a homogeneous compact
Kähler manifold X ′ with fibers isomorphic to a rational homogeneous
manifold; and

(2) a locally trivial fibration τ : X ′ → Y onto a homogeneous compact
Kähler manifold with fibers isomorphic to a compact complex torus;
and

(3) a foliation F ′ on X ′

such that

(1) F = ρ∗F ′; and

(2) τ∗TF ′ is a locally free sheaf of rank dimF ′; and

(3) det τ∗NF ′ is ample; and

(4) the dimension of Y is at most the codimension of F .

The first locally trivial fibration ρ : X → X ′ has all its fibers contained
in the leaves of F . For the second locally trivial fibration τ : X ′ → Y the
behavior can be different: the general fiber is not necessarily invariant by
F ′.

By the Borel-Remmert theorem, a homogeneous compact Kähler mani-
fold X can be decomposed as a product R × T of a rational homogeneous
complex variety R (a generalized flag variety) times a compact complex
torus T . It is easy to show that locally trivial fibrations preserve this de-
composition, so that the morphism ρ (respectively τ) in Theorem A restricts
to the identity on the torus component (respectively on the rational com-
ponent). Analogously, the morphism π in Theorem C is nothing but the
projection onto the torus component of the Borel-Remmert decomposition.
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The proof of Theorem A follows from an analysis of the linear system
|detNF|. The smoothness of F together with the homogeneity of X im-
plies that |detNF| is base point free and therefore defines a morphism.
A standard factorization result for morphisms from compact homogeneous
manifolds together with Borel-Remmert structure Theorem allow us to con-
clude. Details are given in Section 3.

1.3. Smooth foliations on rational homogeneous manifolds

An immediate corollary of Theorem A is the fact that rational homoge-
neous manifolds only carry trivial smooth foliations.

Corollary B.— Smooth foliations on rational homogeneous manifolds
are locally trivial fibrations.

It is perhaps worth mentioning that in dimension two the only ratio-
nal surfaces (not homogeneous a priori) which carry smooth foliations by
curves are the Hirzebruch surfaces ( P1 bundles over P1 ) according to
[2, Proposition 4]. In higher dimensions we are not aware of examples of
smooth foliations on rationally connected manifolds which are not fibra-
tions.

1.4. Minimal smooth foliations

Although Example 1.1 shows that we have a lot of freedom to construct
smooth foliations on projective homogeneous manifolds, all the examples
constructed along the same guidelines will have invariant compact proper
subvarieties: the pre-images of the irreducible components of the singular
set of G under the natural projection Y ×A→ Y .

It seems natural to enquire if this is just a coincidence or a general
phenomena. In other terms, what can we say about the smooth foliations on
compact Kähler homogeneous manifolds that do not leave proper compact
subvarieties invariant ? Our second main result tells that there are not many
possibilities: the foliation is essentially a linear foliation on a compact torus.

Theorem C.— Let F be a smooth foliation on a homogeneous compact
Kähler manifold X. If every leaf of F is analytically dense (meaning it is
not contained in any proper compact subvariety) then there exist a locally
trivial fibration π : X → Y with rational fibers onto a complex torus Y and
a linear foliation G on Y such that F = π∗G.

The proof relies on our Theorem A, Bott’s vanishing Theorem, and the
study of a natural rational map from X to a certain Grassmannian which
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is constant along fibers of the projection X → Y given by Theorem A and
describes how the restriction of F to these very same fibers varies.

1.5. Acknowledgements

This research was carried out while the first author was a visiting student
at IMPA. We are grateful to IMPA for providing financial support for such
visit, and to Serge Cantat for the suggestion of looking at smooth foliations
on compact homogeneous manifolds.

2. Foliations

2.1. Foliations as subsheaves of the tangent sheaf

A (singular) foliation F on a complex manifold X is determined by a
coherent subsheaf TF of TX such that

(1) TF is involutive (closed under the Lie bracket); and

(2) the quotient TX/TF is torsion free.

The dimension of F is the generic rank of TF , and the singular set of F is
the singular set of the sheaf TX/TF . A foliation F is smooth if, and only
if, both TF and TX/TF are locally free sheaves.

2.2. Foliations as subsheaves of the cotangent sheaf

Alternatively, we can define a foliation through a coherent subsheaf N∗F
of Ω1

X such that

(1) N∗F is integrable ( dN∗F ⊂ N∗F ∧ Ω1
X ); and

(2) the quotient Ω1
X/N

∗F is torsion free.

The codimension of F is the generic rank of N∗F . Similarly, a foliation
F is smooth if, and only if, both N∗F and Ω1

X/N
∗F are locally free sheaves.

2.3. Foliations and differential forms

If F is a foliation of codimension q then from the inclusion N∗F → Ω1
X

we deduce a morphism detN∗F → ΩqX . If we set LF = (detN∗F)∗ we get

– 145 –



Federico Lo Bianco, Jorge Vitório Pereira

a q-form ω ∈ H0(X,ΩqX ⊗ LF ) which defines the foliation F in the sense
that TF can be recovered as the kernel of the morphism

TX −→ Ωq−1
X ⊗ LF

v �−→ ivω .

If F is smooth, all the sheaves that we have defined so far are actually
locally free, so that

LF = det(N∗F)∗ = det(NF).

2.4. Bott’s vanishing Theorem

Given a smooth foliation F on a complex manifold X, Bott showed how
to construct a partial holomorphic connection on the normal bundle of F
and along the tangent bundle of F . His construction goes as follows. Given
a germ of vector field v tangent to F and a germ of section σ of NF we
want to be able to differentiate σ along v. To do it, consider an arbitrary
lift σ̂ of σ to TX, take the bracket of v with σ̂ and project the result back
to NF . This defines a flat partial connection ∇ on NF , which is nowadays
called Bott’s partial connection.

Applying Chern-Weyl theory to compute the Chern classes of NF in
terms of a C∞ extension of ∇ to a full connection, Bott proved the following
fundamental result.

Theorem 2.1. — Let F be a smooth foliation of codimension q on a
complex manifold. Any polynomial of degree at least q + 1 on the Chern
classes of the normal bundle of F vanishes identically.

For a proof see [1, Proposition 3.27]

3. Rough structure of smooth foliations

3.1. Normal reduction

We start by recalling [7, Corollary 2.2] which we state below as lemma.

Lemma 3.1. — Let G/H a compact homogeneous manifold and let
φ : G/H → Z be a surjective morphism. Then there exist a subgroup K ⊇ H
and a morphism with finite fibers ψ : G/K → Z such that φ = ψ ◦ π, where
π : G/H → G/K is the natural projection.
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We will apply this lemma to establish what we call the normal reduction
of F .

Proposition 3.2.— Let F be a smooth foliation on a compact homo-
geneous manifold X. Then there exist a projection π : X → Y of X onto a
compact homogeneous manifold Y , equivariant with respect to the action of
G = Aut0(X), and an ample line bundle A on Y such that LF = π∗A. We
call π : X → Y the normal reduction of F .

Proof. — Let NF and TF be respectively the normal and the tangent bun-
dle of F . We have an exact sequence of sheaves (in this case, since F is
smooth, of vector bundles)

0→ TF → TX → NF → 0.

Since X is homogeneous TX is globally generated, thus NF is as well; in
particular the base locus of the line bundle LF := det(NF) is empty, and
we have a morphism

φ : X → PH0(X,LF )∨ ∼= PN N := h0(X,LF )− 1

such that φ∗OPN (1) = LF . Let Z be the image of φ.

Let π : X → Y and ψ : Y → Z be the maps defined by Lemma 3.1, and
A := ψ∗(O(1)|Z). Then A is the pull-back by a finite morphism of an ample
line bundle, and is therefore ample. To conclude it suffices to notice that
LF = φ∗(O(1)|Y ) = π∗A.

Remark 3.3. — Since A is ample we have that the dimension of Y is
given by the formula

dimY = min{n � 0 | c1(LF )n+1 = 0}.
Bott’s vanishing theorem implies the dimension of Y is bounded from above
by the codimension of F , i.e. dimY � q.

3.2. Conormal bundle on fibers of the normal reduction

Let F be a smooth foliation on a compact homogeneous manifold X.
Let us consider a fiber F = π−1(q) of π, the normal reduction of F . Notice
that F is a compact homogeneous manifold.

Lemma 3.4. — There exists a neighbourhood U ⊂ Y of q such that,
if we denote V = π−1(U), the sheaf N∗F|V is globally generated, i.e. the
morphism

H0(V,N∗F|V )⊗OV → N∗F|V
is surjective.
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Proof. — Let p be a point of F and let U be a neighbourhood of q where TY
and π∗(detNF) are both trivial (for example U isomorphic to a product of
discs). Then the restriction of ω to V = π−1(U) is a global q-form.

In a neighbourhood of p, ω is decomposable as follows

ω = ω1 ∧ . . . ∧ ωq,

where ωi = iviω for some decomposable local section vi of
∧q−1

TX. Since

X is a homogeneous manifold,
∧q−1

TX is globally generated, so we can

find global sections v̂1, . . . , v̂N of
∧q−1

TX such that vi =
∑
j λi,j v̂j for

some local functions λi,j .

Now, any local section α of N∗F can be written as
∑
fiωi for some local

functions fi. We have then

α =
∑

i

fiωi =
∑

i,j

fiλi,jiv̂jω,

which proves the statement since every iv̂jω is a global section ofN∗F|V .

The Kähler assumption plays no role in the Lemma above, but it is essen-
tial in the result below by Borel and Remmert, see for instance
[7, Theorem 2.5].

Theorem 3.5 (Borel-Remmert). — Let X be a homogeneous compact
Kähler manifold. Then there exists a decomposition

X ∼= R× T
where R is a rational homogeneous projective manifold and T is a complex
torus.

3.3. Proof of Theorem A

Let F be as in the statement of Theorem A, i.e. F is a smooth foliation
on a homogeneous compact Kähler manifold. Let π : X → Y be the normal
reduction of F , and let

X ∼= R× T, and Y ∼= R′ × T ′

be the Borel-Remmert decompositions of X and Y respectively. The normal
reduction of F respects the product structures of X and Y ; in other words,
there exist two surjective morphisms πR : R → R′ and πT : T → T ′ such
that π = πR × πT . Define

X ′ = R′ × T,
and let ρ = πR × idT and τ = idR′ × πT , so that τ ◦ ρ = π.
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Now, by Lemma 3.4, the vector bundleN∗F is globally generated around
each fiber of π. Let α be a global section of N∗F around a fiber of π, that
we can see as a global holomorphic 1-form at a neighborhood of this fiber.
The fibers of ρ are rational homogeneous manifolds, and since there exist no
global holomorphic 1-form on such manifolds, we have that the pull-back of
α to any fiber of ρ is identically zero. Therefore the fibers of ρ are contained
in leaves of F , and consequently there exists a foliation F ′ on X ′ such that
F = ρ∗F ′.

Now let us prove that τ∗TF ′ is a locally free sheaf of rank equal to
dimF ′. Let U ⊂ Y be a sufficiently small open neighbourhood of a point
q ∈ Y ; then TX ′ is trivial when restricted to V := τ−1(U). A section s of
τ∗TF ′ on U is by definition a section of TF ′ on V , so in particular it is a
section of TX ′ on V . Since the fibers are parallelizable and compact, the
restriction of s to F := τ−1(q) is a constant vector field. The claim easily
follows by writing the section in local coordinates on the base and global
coordinates on the fiber.

By the properties of the normal reduction, we have det(NF) = π∗A for
some ample line bundle A on Y . On the other hand

det(NF) = ρ∗ det(NF ′) = ρ∗τ∗ det(τ∗NF ′) = π∗ det(τ∗NF ′),

where the second equality follows from the fact that TY (and thus NF ′
and detNF ′) is globally generated around the fibers of π. This shows that
det τ∗NF ′ is an ample line-bundle.

Finally the bound on the dimension of Y follows from Remark 3.3.

3.4. Proof of Corollary B

Let F be a smooth foliation on a homogeneous rational manifold X;
apply Theorem A to X. Since the torus component of X is trivial, we must
have τ = idX′ . So F = ρ∗F ′ for some smooth foliation F ′ such that detNF ′
is ample. By Bott’s vanishing theorem we have c1(detNF ′)q+1 = 0 where q
is the codimension of F ′; since detNF ′ is ample we obtain q = dimX ′, so
that F ′ is the foliation by points and F is the locally trivial fibration ρ.

4. Foliations with all leaves analytically dense

Throughout this Section we will suppose that the fibers of the normal
reduction are tori.
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4.1. Direct image of the tangent bundle

Lemma 4.1.— Let F be a smooth foliation on a compact homogeneous
manifold X. If π : X → Y is the normal reduction and the fibers of π are
parallelizable, then the image T of the natural morphism φ : π∗TF → TY
is an involutiveness subsheaf of TY .

Proof. — Let v, w be two local sections of T on U ⊂ Y . Up to restricting U ,
we can suppose that v = φ(v0), w = φ(w0) for some local sections v0, w0 of
π∗TF , and we can identify v0 and w0 with sections of TF on V := π−1(U).
Let x1, . . . , xn be local coordinates on the base and y1, . . . ym be global
coordinates on the (universal cover of the) fiber. Then we can write

v0(x) =
∑

i

ai(x)
∂

∂xi
+

∑

j

bj(x)
∂

∂yj

for some holomorphic functions ai, bj on π−1(U). Then

φ(v0) =
∑

i

ai(x)
∂

∂xi
;

by writing w in the same way and using that ∂
∂yk

ai = ∂
∂yk

bj = 0 for any
choice of i, j, k we deduce that φ commutes with Lie brackets. The lemma
follows from the involutivity of TF .

Remark 4.2.— According to Theorem A, the sheaf π∗TF is locally free.
But beware that this not imply that T is a locally free subsheaf of TY .
Moreover, even if T is locally free, it is not necessarily the tangent sheaf of
a foliation since TY/T is not necessarily torsion free.

Lemma 4.3.— If T is an involutive subsheaf of TY then the singular
locus of T is T -invariant.

Proof. — Since the claim is local it suffices to prove it locally around q ∈ Y .
Let r be the generic rank of T and v1, . . . , vr be local sections of T such
that ψ = v1 ∧ · · · ∧ vr is a non-zero local section of

∧r
TY . We can write ψ

as hψ0 where h ∈ OY,q and ψ0 is a local section of
∧r

TY with zero locus
of codimension at least two. Since the rank of T is r, it follows that the
image of every section of

∧r T in
∧r

TY is a multiple of ψ0. We have then
a morphism of OY -modules

α :

r∧
T → OY
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that maps a local section ψ = v1 ∧ . . . ∧ vr to the local section f of OY
satisfying ψ = f ·ψ0. The singular locus of T is defined by the ideal α(

∧r T )
which is nothing but the r-th Fitting ideal of T , see [6, Section 20.2].

Let θ = v1 ∧ · · · ∧ vr be a local section of
∧r T and v a local section of

T . We want to show that v(α(θ)) is contained in the image of α. We first
calculate the Lie derivative of θ := v1 ∧ . . . ∧ vr along v:

Lv(θ) = [v, v1 ∧ . . .∧ vr] =

n∑

i=1

(−1)i+1[v, vi]∧ v1 ∧ . . .∧ vi−1 ∧ vi+1 ∧ . . .∧ vr,

where [, ] denotes the Schouten-Nijenhuis bracket, which generalises the Lie
bracket on the exterior product

∧r
TY . Since v ∈ T and T is involutive, we

have [v, vi] ∈ T , so that Lv(v1 ∧ . . . ∧ vr) is a local section of
∧r T .

On the other hand

Lv(θ) = [v, α(θ)ψ0] = α(θ)[v, ψ0] + v(α(θ))ψ0.

Now, Lv(θ) belongs to
∧r T . Furthermore, for any choice of a non-zero

section θ of
∧r T , we have

[v, ψ0] =
Lv(θ)− v(α(θ))ψ0

α(θ)
= f · ψ0

for some meromorphic function f . Since [v, ψ0] is a holomorphic function,
the singular locus of f must be contained in the zero locus of ψ0; since the
zero locus of ψ0 has codimension at least 2, we conclude that [v, ψ0] is a
multiple of ψ0, say [v, ψ0] = hψ0.

Therefore we can write

α(Lv(θ))ψ0 = α(θ)hψ0 + v(α(θ))ψ0,

and conclude that

v(α(θ)) = α(Lv(θ))− α(θ)h ∈ Im(α)

as wanted.

Lemma 4.4.— Let T be an involutive subsheaf of TY which is locally
free. Then the singular locus of TY/T is T -invariant.

Proof. — Since the claim is local it suffices to prove it locally around q ∈ Y .
Let r be the rank of T and v1, . . . , vr be generators of T at a neighborhood
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of q. The singular locus of TY/T is defined by the ideal I generated by the
coefficients of θ = v1 ∧ . . . ∧ vr.

Let v be a local section of T ⊂ TY . In the proof of Lemma 4.3 we have
learned that Lv(θ) is a local section of

∧r T . As such it can be written as a
multiple of θ, i.e. Lvθ = Hθ for some holomorphic function H.

Choose now commuting vector fields ξ1, . . . , ξn around q which generate
TY at a neighborhood of q. Then we can write

θ =
∑

aJξJ

where J = (j1, . . . , jr) and ξJ = ξj1 ∧ . . . ∧ ξjr . If we compute Lvθ in this
basis, we get

Lvθ =
∑

J

Lv(aJξJ) =
∑

J

(v(aJ)ξJ + aJLv(ξJ)) .

Since the left hand side is equal to
∑
J HaJξJ , it follows that the ideal

I generated by the aJ ’s ( the coefficients of θ ) is left invariant by v, i.e.
v(I) ⊂ I.

4.2. First integrals

The restriction of det(NF) around the fibers of π is trivial, so that the
foliation induced by F on fibers of π is defined by a global holomorphic
form. Since the fibers are tori the only global forms are linear forms, so that
F associates to each fiber F a linear subspace of T0F (where we denote by
0 the identity element for a choice of a group law on F ). If F = π−1(q)
and the image of φ has maximal rank at q, then the above subspace has
dimension dimF − dimG, where G = π∗F is the (singular) foliation on Y
whose leaves are the projections of the leaves of F .

If X = R×T and Y = R×T ′ are the Borel-Remmert decompositions of
X and Y (recall that we are assuming that the fibers of the normal reduction
are tori), then π is induced by a projection of tori πT : T → T ′, which can
be supposed to be a group homomorphism. The group law on T ′ allows us
to canonically identify every fiber with the fiber over 0 ∈ T ′, and the above
construction defines a rational function

f : Y ��� Gr(k,dimF ),

where k = dimF − dimG; F is any fiber of π (so that dimF = dimX −
dimY ); and Gr(k,dimF ) is the Grassmannian of k-planes in CdimF.
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Lemma 4.5.— The function f is constant along the leaves of G.

Proof. — Let D ⊂ Y be a small disc contained in one of the leaves of G. It
suffices to prove that f is constant on D.

Let us fix linear coordinates x1, . . . xk on the universal covering of a
fiber and a coordinate y on D. We call H the foliation induced by F on
π−1(D) ∼= D× F. We are going to prove that the foliation induced by H on
each fiber over D (which is the same as the foliation induced by F) does not
depend on the chosen fiber (meaning that f is constant along D).

The foliation H is defined by some vector fields; up to changing the order
of the xi’s we can choose a base v0, . . . , vh of the space of local sections of
TH of the form

v0 =
∂

∂y
+

∑

j�h+1

a
(0)
j (y)

∂

∂xj
, vi =

∂

∂xi
+

∑

j�h+1

a
(i)
j (y)

∂

∂xj
i = 1, . . . , h.

Here the a
(i)
j only depend on y because det(NF) is trivial around fibers, so

that F is defined by global holomorphic 1-forms on fibers.

The foliation induced by H on each fiber is defined by the vector fields

v1, . . . , vh. Thus we have to prove that a
(i)
j is constant for all i = 1, . . . , h

and j � h+ 1. In order to do that we compute the bracket

[v0, vi] =
∑

j�h+1

∂a
(i)
j

∂y

∂

∂xj
.

By involutivity we must have [v0, vi] ∈ Span(v0, . . . , vh), but it is easy to

see that then [v0, vi] = 0, so that the a
(i)
j s are constant along D. This proves

the lemma.

Corollary 4.6. — If there exists a leaf of G analytically dense then
f : Y → Gr(k,dimF ) is constant. In particular the conclusion holds if all
the leaves of F are analytically dense.

It follows from Lemma 4.5 that the field of meromorphic first integrals
of G, i.e. the subfield of C(Y ) formed by meromorphic functions which are
constant along the leaves of G, contains the field of meromorphic functions
on the Zariski closure of f(Y ).

4.3. Proof of Theorem C

We apply Theorem A to the pair (X,F): it is clear that the leaves of
the foliation F ′ on X ′ are still analytically dense. We can thus suppose that
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X = X ′ or, equivalently, that the fibers of the normal reduction π : X → Y
are tori; we now have to prove that X is a torus and F is a linear foliation.

The image T of φ : π∗TF → TY satisfies the hypothesis of Lemma 4.3.
Since S = sing(T ) is T -invariant we see that π−1(S) is F-invariant. As
we are assuming that every leaf of F is analytically dense, it follows that
sing(T ) is empty and T satisfies the hypothesis of Lemma 4.4. Analogously,
we deduce that sing(TY/T ) is also empty and consequently T is the tangent
bundle of a smooth foliation G on Y such that G = π∗(F). Since all leaves
of F are dense, all leaves of G are dense too.

Let us consider the commutative diagram

0 0 0
�

�
�

0 −−−−→ K −−−−→ TX/Y −−−−→ (TX/Y )/K −−−−→ 0
�

�
�

0 −−−−→ TF −−−−→ TX −−−−→ NF −−−−→ 0
�

�
�

0 −−−−→ π∗TG −−−−→ π∗TY −−−−→ π∗NG −−−−→ 0
�

�
�

0 0 0

.

As previously remarked, it follows from Borel-Remmert that X = R×T
and Y = R × T ′ and the normal reduction morphism π : X → Y is the
product of the identity over the rational manifold R with a group homo-
morphism from the torus T to the torus T ′. In particular TX/Y is a free
sheaf over X.

We will now prove that K is also a free sheaf. First remark that, since
T = TG is the tangent sheaf of a smooth foliation, the rank of the sheaf
morphism φ̃ : TF → π∗TG must be maximal at every point, which means
that K is locally free. Moreover it is the tangent sheaf of a smooth foliation
H on X tangent to the fibers of π (the intersection between the foliation F
and the fibration π). Now by Corollary 4.6, TF defines a linear subspace
V ⊂ T0F on each fiber which does not depend on the choice of the fiber;
this means that K = TH ∼= V ×X as desired.
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Using the triviality of det(TX/Y ) and of det(K), we can write

det(NF) = det(π∗NG)⊗ det((TX/Y )/K) =

= π∗ det(NG)⊗ det(TX/Y )⊗ det(K)−1 = π∗ det(NG).

By the definition of normal reduction we have that det(NG) is ample. Bott’s
vanishing theorem reads as det(NG)q′+1 = 0, where q′ is the codimension
of G. But then q′ = dimY , so G is the foliation by points, and since every
leaf of G is dense we must have Y = {pt}. It follows that det(NF) is trivial,
so that F is defined by a global holomorphic q-form on X. Now X, being
the only fiber of π, is a compact complex torus by our initial assumption;
to conclude the proof it suffices to remark that global q-forms on tori are
linear.

5. Further examples

Let F be a smooth foliation on a compact Kähler homogeneous manifold.
Using the notation of Theorem A, let φ : π∗TF → TY be the composition
of natural morphisms π∗TF → π∗TX → TY . In general φ has no rea-
son to be neither injective nor surjective. In the Introduction we already
presented examples in which the morphism above is not surjective. For tur-
bulent codimension one foliations on homogeneous manifolds of dimension
at least three the morphism φ is generically surjective but it is not injective.

5.1. Non injective and non generically surjective example

A minor modification of Example 1.1 allow us to construct an example
for which the composition φ : π∗TF → TY is not injective nor generically
surjective. As before let G be a one-dimensional foliation on Y with isolated
singularities and assume that there exists a section σ ∈ H0(Y, T ∗G) which
does not vanish on sing(G). Let A be a compact complex torus of dimension
a and let v0, v1, . . . , vk ∈ H0(A, TA) be (k + 1) linearly independent vector
fields on A (k � a− 1). If X = Y ×A then we have an injection

(π∗Y TG)⊕OX⊕k −→ TX = π∗Y TY ⊕ π∗ATA

(w, f1, . . . , fk) �−→ (w, σ(w)v0 +

k∑

i=1

fivi) .

It is a simple matter to verify that the image of the morphism above is
an involutive locally free subsheaf of TX of rank k + 1 with locally free
cokernel. Therefore it defines a foliation F on X of dimension k+1, and by
construction the image of φ : π∗TF → TY coincides with TG.
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5.2. Injective and generically surjective example of arbitrary codi-
mension

Let Y ⊂ PN be an abelian variety of dimension d; fix d + 1 hyperplane
sections D0, . . . Dd of Y such that D =

∑
Di ∈ Div(Y ) is a simple normal

crossing divisor, and the the intersection D0 ∩ . . . ∩Dd is empty.

Fix another abelian variety F with the same dimension as Y . We are
going to produce a smooth foliation F on X = Y × F such that the image
of π∗TF in TY is isomorphic to TY (logD); in particular φ : π∗TF → TY
is injective and generically surjective, but its image is not the tangent sheaf
of a foliation since TY/TY (logD) is not torsion-free.

Lemma 5.1.— Ω1
Y (logD) is globally generated.

Proof. — Let p ∈ Y . Then p belongs to at most d of the Di-s, let’s say
D1, . . . , Dk. Let us fix coordinates x1, . . . xd of Y around p such that Di =
{xi = 0} for i = 1, . . . , k; then the local sections of Ω1

Y (logD) around p are
generated by the forms

dx1

x1
, . . . ,

dxk
xk

, dxk+1, . . . , dxd.

Now if l0, . . . ld are linear equations on PN defining the Di-s, then the
restriction to Y of the meromorphic form d log(li/lj) defines a global section
of Ω1

Y (logD) whose only poles are along Di and Dj . In local coordinates
around p we have therefore

d log(li/l0) = λi
dxi
xi

+ hol

for i = 1, . . . , k. Since Y is a torus, the sheaf of holomorphic forms Ω1
Y

is trivial and in particular globally generated. This proves that each one
of the forms dxi/xi can be generated by global sections, which proves the
statement.

Any section σ : Y → X of π : X → Y defines a foliation H on X
with leaves equal to translations of σ(Y ) by elements of F . The foliation H
induces a natural inclusion of π∗TY (logD) in TX, namely

h : π∗TY (logD)→ TH ⊂ TX.

In this way we can see π∗TY (logD) as an involutive subsheaf of TX. Note
that it does not coincide with the tangent sheaf of H; the cokernel of the
inclusion π∗TY (logD)→ TH is not torsion-free.
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We want to construct a vertical perturbation

v : π∗TY (logD)→ TX/Y ↪→ TX

in order to define the sheaf TF as the image of the sum morphism

h+ v : π∗TY (logD)→ TX.

Let y1, . . . , yl be linear coordinates on the universal covering of F . The
morphism v can be written as

v =

l∑

i=1

(π∗si)
∂

∂yi

for some global sections s1 . . . , sl of Ω1
Y (logD); reciprocally, every choice of

global sections s1, . . . , sl gives a morphism v : TY (logD) → π∗TX/Y . We
choose global sections s1, . . . , sl such that on each point of D the image
of the vertical morphism defined by the si is a vector space of maximal
dimension d; the existence of such sections for a suitable l is assured by
Lemma 5.1.

In order for TF to be the tangent sheaf of a smooth foliation, we have to
verify that: TF is involutive; TF is locally free; and TX/TF is locally free.
The fact that TF and TX/TF are locally free follows from the definition
of v.

In order to prove the integrability of TF take two local sections of
π∗TY (logD)

v1 =

d∑

i=1

ai∂xi , v2 =

d∑

j=1

bj∂xj ,

where x1, . . . xd are local coordinates on Y and ∂xi := ∂/∂xi. We have to
check that

[(h+ v)(v1); (h+ v)(v2)] ∈ Im(h+ v).

Since π∗TY (logD) is globally generated around fibers of π, we can assume
without loss of generality that ai and bj only depend on the x coordinates
(i.e. are constant along the fibers of π). Thus

[(h+ v)(v1); (h+ v)(v2)] = h([v1; v2]) + [h(v1); v(v2)] + [v(v1);h(v2)].

Hence we have to prove that [h(v1); v(v2)] + [v(v1);h(v2)] = v([v1, v2]). We
have

[v1; v2] =
∑

ai
∂bj
∂xi

∂xj −
∑

bj
∂ai
∂xj

∂xi =
∑ (

ai
∂bj
∂xi
− bi

∂aj
∂xi

)
∂xj ,

– 157 –



Federico Lo Bianco, Jorge Vitório Pereira

so that

v([v1; v2]) =
∑ (

ai
∂bj
∂xi
− bi

∂aj
∂xi

)
sk(∂xj )∂yk .

On the other hand

[h(v1); v(v2)] =
∑

ai
∂bj
∂xi

sk(∂xj )∂yk +
∑

aibj
∂

∂xi
(sk(∂xj ))∂yk

so that
[h(v1); v(v2)] + [v(v1);h(v2)] =

v([v1; v2]) +
∑

aibj

(
∂

∂xj
(sk(∂xi))−

∂

∂xi
(sk(∂xj ))

)
∂yk .

Since the equality must be true for all choices of v1 and v2, we now have
to prove that for all i, j, k

∂

∂xj
(sk(∂xi))−

∂

∂xi
(sk(∂xj )) = 0,

that is dsk(∂xi , ∂xj ) = 0.

Since sk is a logarithmic 1-form with normal crossing polar divisor on a
compact Kähler manifold, it must be closed by a Theorem of Deligne, see
[5, Corollary 3.2.14] for the original proof, and [9] or [4, Lemma 2.1] for
short analytic proofs.
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