La percolation de l’information est une nouvelle méthode pour analyser les systèmes de spins stochastiques à travers la classification et le contrôle des amas de flots d’information dans des tranches d’espace-temps. Elle fournit des estimées fines de mélange (transition abrupte dans une fenêtre d’ordre ) pour le modèle d’Ising sur jusqu’à la température critique, ainsi que des résultats sur l’influence des conditions initiales sur le mélange. Dans cet article de présentation, nous appliquons cette méthode à des réseaux (plus généralement, sur tout graphe localement fini et transitif) à très haute température.
Information percolation is a new method for analyzing stochastic spin systems through classifying and controlling the clusters of information-flow in the space-time slab. It yielded sharp mixing estimates (cutoff with an -window) for the Ising model on up to the critical temperature, as well as results on the effect of initial conditions on mixing. In this expository note we demonstrate the method on lattices (more generally, on any locally-finite transitive graph) at very high temperatures.
@article{AFST_2015_6_24_4_745_0, author = {Lubetzky, Eyal and Sly, Allan}, title = {An exposition to information percolation for the {Ising} model}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {745--761}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 24}, number = {4}, year = {2015}, doi = {10.5802/afst.1462}, zbl = {1333.60207}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1462/} }
TY - JOUR AU - Lubetzky, Eyal AU - Sly, Allan TI - An exposition to information percolation for the Ising model JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2015 SP - 745 EP - 761 VL - 24 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1462/ DO - 10.5802/afst.1462 LA - en ID - AFST_2015_6_24_4_745_0 ER -
%0 Journal Article %A Lubetzky, Eyal %A Sly, Allan %T An exposition to information percolation for the Ising model %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2015 %P 745-761 %V 24 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1462/ %R 10.5802/afst.1462 %G en %F AFST_2015_6_24_4_745_0
Lubetzky, Eyal; Sly, Allan. An exposition to information percolation for the Ising model. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 4, pp. 745-761. doi : 10.5802/afst.1462. http://www.numdam.org/articles/10.5802/afst.1462/
[1] Aldous (D.).— Random walks on finite groups and rapidly mixing Markov chains, Seminar on probability, XVII, p. 243-297 (1993). | Numdam | MR | Zbl
[2] Aldous (D.) and Diaconis (P.).— Shuffing cards and stopping times, Amer. Math. Monthly 93, p. 333-348 (1986). | MR | Zbl
[3] Diaconis (P.).— The cutoff phenomenon in finite Markov chains, Proc. Nat. Acad. Sci. U.S.A. 93, no. 4, p. 1659-1664 (1996). | MR | Zbl
[4] Diaconis (P.) and Shahshahani (M.).— Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Gebiete 57, no. 2, p. 159-179 (1981). | MR | Zbl
[5] Liggett (T. M.).— Interacting particle systems, Classics in Mathematics, Springer-Verlag, Berlin (2005). | MR | Zbl
[6] Lubetzky (E.) and Sly (A.).— Cutoff phenomena for random walks on random regular graphs, Duke Math. J. 153, no. 3, p. 475-510 (2010). | MR | Zbl
[7] Lubetzky (E.) and Sly (A.).— Explicit expanders with cutoff phenomena, Electron. J. Probab. 16, no. 15, p. 419-435 (2011). | MR | Zbl
[8] Lubetzky (E.) and Sly (A.).— Cutoff for the Ising model on the lattice, Invent. Math. 191, no. 3, p. 719-755 (2013). | MR | Zbl
[9] Lubetzky (E.) and Sly (A.).— Cutoff for general spin systems with arbitrary boundary conditions, Comm. Pure. Appl. Math. 67, no. 6, p. 982-1027 (2014). | MR | Zbl
[10] Lubetzky (E.) and Sly (A.).— Information percolation and cutoff for thr stochastic Ising model. J. Amer. Math. Soc., to appear.
[11] Lubetzky (E.) and Sly (A.).— Universality of cutoff for the Ising model, preprint. Available at arXiv:1407.1761 (2014). | MR
[12] Martinelli (F.).— Lectures on Glauber dynamics for discrete spin models, Lectures on probability theory and statistics (Saint-Flour, 1997), Lecture Notes in Math., vol. 1717, Springer, Berlin, p. 93-191 (1999). | MR | Zbl
[13] Miller (J.) and Peres (Y.).— Uniformity of the uncovered set of random walk and cutoff for lamplighter chains, Ann. Probab. 40, no. 2, p. 535-577 (2012). | MR | Zbl
[14] Propp (J. G.) and Wilson (D. B.).— Exact sampling with coupled Markov chains and applications to statistical mechanics, Random Structures Algorithms 9, no. 1-2, p. 223-252 (1996). | MR | Zbl
Cité par Sources :