La percolation de l’information est une nouvelle méthode pour analyser les systèmes de spins stochastiques à travers la classification et le contrôle des amas de flots d’information dans des tranches d’espace-temps. Elle fournit des estimées fines de mélange (transition abrupte dans une fenêtre d’ordre
Information percolation is a new method for analyzing stochastic spin systems through classifying and controlling the clusters of information-flow in the space-time slab. It yielded sharp mixing estimates (cutoff with an
@article{AFST_2015_6_24_4_745_0, author = {Lubetzky, Eyal and Sly, Allan}, title = {An exposition to information percolation for the {Ising} model}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {745--761}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 24}, number = {4}, year = {2015}, doi = {10.5802/afst.1462}, zbl = {1333.60207}, language = {en}, url = {https://www.numdam.org/articles/10.5802/afst.1462/} }
TY - JOUR AU - Lubetzky, Eyal AU - Sly, Allan TI - An exposition to information percolation for the Ising model JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2015 SP - 745 EP - 761 VL - 24 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1462/ DO - 10.5802/afst.1462 LA - en ID - AFST_2015_6_24_4_745_0 ER -
%0 Journal Article %A Lubetzky, Eyal %A Sly, Allan %T An exposition to information percolation for the Ising model %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2015 %P 745-761 %V 24 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U https://www.numdam.org/articles/10.5802/afst.1462/ %R 10.5802/afst.1462 %G en %F AFST_2015_6_24_4_745_0
Lubetzky, Eyal; Sly, Allan. An exposition to information percolation for the Ising model. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Numéro Spécial : Conférence “Talking Across Fields” du 24 au 28 mars 2014 à l’Institut de Mathématiques de Toulouse, Tome 24 (2015) no. 4, pp. 745-761. doi : 10.5802/afst.1462. https://www.numdam.org/articles/10.5802/afst.1462/
[1] Aldous (D.).— Random walks on finite groups and rapidly mixing Markov chains, Seminar on probability, XVII, p. 243-297 (1993). | Numdam | MR | Zbl
[2] Aldous (D.) and Diaconis (P.).— Shuffing cards and stopping times, Amer. Math. Monthly 93, p. 333-348 (1986). | MR | Zbl
[3] Diaconis (P.).— The cutoff phenomenon in finite Markov chains, Proc. Nat. Acad. Sci. U.S.A. 93, no. 4, p. 1659-1664 (1996). | MR | Zbl
[4] Diaconis (P.) and Shahshahani (M.).— Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Gebiete 57, no. 2, p. 159-179 (1981). | MR | Zbl
[5] Liggett (T. M.).— Interacting particle systems, Classics in Mathematics, Springer-Verlag, Berlin (2005). | MR | Zbl
[6] Lubetzky (E.) and Sly (A.).— Cutoff phenomena for random walks on random regular graphs, Duke Math. J. 153, no. 3, p. 475-510 (2010). | MR | Zbl
[7] Lubetzky (E.) and Sly (A.).— Explicit expanders with cutoff phenomena, Electron. J. Probab. 16, no. 15, p. 419-435 (2011). | MR | Zbl
[8] Lubetzky (E.) and Sly (A.).— Cutoff for the Ising model on the lattice, Invent. Math. 191, no. 3, p. 719-755 (2013). | MR | Zbl
[9] Lubetzky (E.) and Sly (A.).— Cutoff for general spin systems with arbitrary boundary conditions, Comm. Pure. Appl. Math. 67, no. 6, p. 982-1027 (2014). | MR | Zbl
[10] Lubetzky (E.) and Sly (A.).— Information percolation and cutoff for thr stochastic Ising model. J. Amer. Math. Soc., to appear.
[11] Lubetzky (E.) and Sly (A.).— Universality of cutoff for the Ising model, preprint. Available at arXiv:1407.1761 (2014). | MR
[12] Martinelli (F.).— Lectures on Glauber dynamics for discrete spin models, Lectures on probability theory and statistics (Saint-Flour, 1997), Lecture Notes in Math., vol. 1717, Springer, Berlin, p. 93-191 (1999). | MR | Zbl
[13] Miller (J.) and Peres (Y.).— Uniformity of the uncovered set of random walk and cutoff for lamplighter chains, Ann. Probab. 40, no. 2, p. 535-577 (2012). | MR | Zbl
[14] Propp (J. G.) and Wilson (D. B.).— Exact sampling with coupled Markov chains and applications to statistical mechanics, Random Structures Algorithms 9, no. 1-2, p. 223-252 (1996). | MR | Zbl
- Cutoff for the non reversible SSEP with reservoirs, Electronic Journal of Probability, Volume 28 (2023) no. none | DOI:10.1214/23-ejp1044
- Universality of cutoff for exclusion with reservoirs, The Annals of Probability, Volume 51 (2023) no. 2 | DOI:10.1214/22-aop1600
- Cutoff for the asymmetric riffle shuffle, The Annals of Probability, Volume 50 (2022) no. 6 | DOI:10.1214/22-aop1582
- Fast initial conditions for Glauber dynamics, Probability Theory and Related Fields, Volume 181 (2021) no. 1-3, p. 647 | DOI:10.1007/s00440-020-01015-3
- Information percolation and cutoff for the random‐cluster model, Random Structures Algorithms, Volume 57 (2020) no. 3, p. 770 | DOI:10.1002/rsa.20931
- Cutoff for the Swendsen–Wang dynamics on the lattice, The Annals of Probability, Volume 47 (2019) no. 6 | DOI:10.1214/19-aop1344
- Universality of cutoff for the Ising model, The Annals of Probability, Volume 45 (2017) no. 6A | DOI:10.1214/16-aop1146
Cité par 7 documents. Sources : Crossref