Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 22 (2013) no. 4, pp. 649-711.

Nous montrons, grâce à une approche variationnelle directe, que le deuxième problème avec valeurs au bord pour l’équation de Monge-Ampère dans n avec non-linéarité exponentielle, et ensemble cible un corps convexe P, admet une solution si et seulement si 0 est le barycentre de P. En combinant ce résultat avec de la géométrie torique, on obtient en particulier confirmation de la conjecture de Yau-Tian-Donaldson (généralisée) pour les variétés toriques log-Fano (X,Δ)  ; à savoir que (X,Δ) admet une une métrique de Kähler-Einstein (singulière) si et seulement si elle est K-stable au sens algébro-géométrique. Nous obtenons donc une nouvelle démonstration, qui s’étend au cas log-Fano, du résultat fondateur de Wang-Zhou qui concerne le cas où X est lisse et Δ est trivial. Nous généralisons également la formule torique de Li pour la borne inférieure de la courbure de Ricci. Plus généralement, nous obtenons des solitons de Kähler-Ricci sur toute variété (singulière) log-Fano, et montrons qu’ils apparaissent comme la limite en temps grand du flot de Kähler-Ricci. De plus, en utilisant la dualité, nous confirmons aussi une conjecture de Donaldson sur les solutions du problème de valeurs au bord d’Abreu sur le corps convexe P dans le cas d’une mesure canonique donnée sur la frontière de P.

We show, using a direct variational approach, that the second boundary value problem for the Monge-Ampère equation in n with exponential non-linearity and target a convex body P is solvable iff 0 is the barycenter of P. Combined with some toric geometry this confirms, in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric log Fano varieties (X,Δ) saying that (X,Δ) admits a (singular) Kähler-Einstein metric iff it is K-stable in the algebro-geometric sense. We thus obtain a new proof and extend to the log Fano setting the seminal result of Wang-Zhou concerning the case when X is smooth and Δ is trivial. Li’s toric formula for the greatest lower bound on the Ricci curvature is also generalized. More generally, we obtain Kähler-Ricci solitons on any log Fano variety and show that they appear as the large time limit of the Kähler-Ricci flow. Furthermore, using duality, we also confirm a conjecture of Donaldson concerning solutions to Abreu’s boundary value problem on the convex body P in the case of a given canonical measure on the boundary of P.

@article{AFST_2013_6_22_4_649_0,
     author = {Berman, Robert J. and Berndtsson, Bo},
     title = {Real {Monge-Amp\`ere} equations and {K\"ahler-Ricci} solitons on toric log {Fano} varieties},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {649--711},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 22},
     number = {4},
     year = {2013},
     doi = {10.5802/afst.1386},
     zbl = {1283.58013},
     mrnumber = {3137248},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1386/}
}
TY  - JOUR
AU  - Berman, Robert J.
AU  - Berndtsson, Bo
TI  - Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2013
SP  - 649
EP  - 711
VL  - 22
IS  - 4
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1386/
DO  - 10.5802/afst.1386
LA  - en
ID  - AFST_2013_6_22_4_649_0
ER  - 
%0 Journal Article
%A Berman, Robert J.
%A Berndtsson, Bo
%T Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2013
%P 649-711
%V 22
%N 4
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1386/
%R 10.5802/afst.1386
%G en
%F AFST_2013_6_22_4_649_0
Berman, Robert J.; Berndtsson, Bo. Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 22 (2013) no. 4, pp. 649-711. doi : 10.5802/afst.1386. http://www.numdam.org/articles/10.5802/afst.1386/

[1] Abreu (M.).— Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001). | MR | Zbl

[2] Ambrosio (L.), Gigli (N.), Savar (G.).— Gradient flows in metric spaces and in the space of probability measures. Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008. x+334 pp. | MR | Zbl

[3] Artstein-Avidana (S.), Klartag (B.), Milman (V. M.).— The Santal point of a function, and a functional form of the Santal inequality. Mathematika, 51, p. 33-48 (2004). | MR | Zbl

[4] Bakeman (I.J).— Convex analysis and nonlinear geometric elliptic equations. Springer-Verlag, Berlin, (1994). | MR | Zbl

[5] Barthe (F.).— On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134, no. 2, p. 335-361 (1998). | MR | Zbl

[6] Batyrev (V.V.).— Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, p. 493-535 (1994). | MR | Zbl

[7] Berman (R.J).— A thermodynamical formalism for Monge-Ampere equations, Moser-Trudinger inequalities and Kahler-Einstein metrics. arXiv:1011.3976. | MR

[8] Berman (R.J).— K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics. Preprint.

[9] Berman (R.J), Berndtsson (B.).— Moser-Trudinger type inequalities for complex Monge-Ampère operators and Aubin’s “hypothèse fondamentale”. Preprint in 2011 at arXiv:1109.1263.

[10] Berman (R.J), Berndtsson (B.).— The volume of Kähler-Einstein varieties and convex bodies. arXiv:1112.4445.

[11] Berman (R.J), Boucksom, (S.), Guedj (V.), Zeriahi (A.).— A variational approach to complex Monge-Ampère equations. Publications Math. de l’IHES 117, p. 179-245 (2013). | MR

[12] Berman (R.J), Eyssidieux (P.), Boucksom (S.), Guedj (V.), Zeriahi (A.).— Convergence of the Kähler-Ricci flow and the Ricci iteration on Log-Fano varities. arXiv:1111.7158.

[13] Berndtsson (B.).— Curvature of vector bundles associated to holomorphic fibrations. Annals of Math. Vol. 169, p. 531-560 (2009). | MR | Zbl

[14] Berndtsson (B.).— A Brunn-Minkowski type inequality for Fano manifolds and the Bando- Mabuchi uniqueness theorem , arXiv:1103.0923.

[15] Boucksom (S.), Eyssidieux (P.), Guedj (V.), Zeriahi (A.).— Monge-Ampère equations in big cohomology classes. Acta Math. 205, no. 2, p. 199-262 (2010). | MR | Zbl

[16] Brenier (Y.).— Polar factorization and monotone rearrangement of vector valued functions. Communications on pure and applied mathmatics (1991). | MR | Zbl

[17] Burns (D.), Guillemin (Vi.), Lerman (E.).— Kähler metrics on singular toric varieties. Pacific J. Math. 238, no. 1, p. 27-40 (2008). | MR | Zbl

[18] Caffarelli (L. A.).— Interior W{2,p} estimates for solutions of the Monge-Ampère equation. Ann. of Math. (2) 131, no. 1, p. 135-150 (1990). | MR | Zbl

[19] Caffarelli (L. A.).— Some regularity properties of solutions of Monge Ampère equation. Comm. Pure Appl. Math. 44, no. 8-9, p. 965-969 (1991). | MR | Zbl

[20] Caffarelli (L. A.).— A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. of Math. (2) 131, no. 1, p. 129-134 (1990). | MR | Zbl

[21] Caffarelli (L. A.).— The regularity of mappings with a convex potential. J. Amer. Math. Soc. 5, no. 1, p. 99-104 (1992). | MR | Zbl

[22] Cao (H.-D.).— Existence of gradient Kähler-Ricci solitons. Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), 1-16, A K Peters, Wellesley, MA, (1996). | MR | Zbl

[23] Campana (F.), Guenancia (H.), Păun (M.).— Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. arXiv:1104.4879. To appear in Annales Scientifiques de l’ENS.

[24] Cao (H.-D.), Tian, Gang (T.), Zhu (X.).— Kähler-Ricci solitons on compact complex manifolds with C1(M)>0. Geom. Funct. Anal. 15, no. 3, p. 697-719 (2005). | MR | Zbl

[25] Cox (D. A.), Little (J. B.), Schenck (H. K.).— Toric varieties. Graduate Studies in Mathematics, 124. American Mathematical Society, Providence, RI (2011). | MR | Zbl

[26] Debarre (O.).— Fano varieties. Higher dimensional varieties and rational points (Budapest, 2001), 93-132, Bolyai Soc. Math. Stud., 12, Springer, Berlin (2003). | MR

[27] Demailly (J.-P.), Dinew (S.), Guedj (V.), Pham (H.H.), Kolodziej (S.), Zeriahi (A.).— Hölder continuous solutions to Monge-Ampère equations. arXiv:1112.1388.

[28] Ding (W.Y), Tian (G.).— Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110, no. 2, p. 315-335 (1992). | MR | Zbl

[29] Donaldson (S. K.).— Scalar curvature and stability of toric varities. J. Diff. Geom. 62, p. 289-349 (2002). | MR | Zbl

[30] Donaldson (S. K.).— Kähler geometry on toric manifolds, and some other manifolds with large symmetry. Handbook of geometric analysis. No. 1, 29-75, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA (2008). | MR | Zbl

[31] Donaldson (S. K.).— Constant scalar curvature metrics on toric surfaces. Geom. Funct. Anal. 19, no. 1, 83-136 (2009). | MR | Zbl

[32] Donaldson (S. K.).— Kähler metrics with cone singularities along a divisor. arXiv:1102.1196, 2011 - arxiv.org | MR

[33] Edmunds (D. E.), Evans (W. D.).— Spectral Theory and Differential Operators, Oxford University Press, New York (1987). | MR | Zbl

[34] Feldman (M.), Ilmanen (T.), Knopf (D.).— Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons. J. Differential Geom. 65, no. 2, p. 169-209 (2003). | MR | Zbl

[35] Guedj (V.), Zeriahi (A.).— Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15, no. 4, p. 607-639 (2005). | MR | Zbl

[36] Gutierrez (C.E.).— The Monge-Ampère equation. Progress in Nonlinear Differential Equations and their Applications, 44. Birkhäuser Boston, Inc., Boston, MA, 2001. xii+127 pp. ISBN: 0-8176-4177-7 | MR | Zbl

[37] Jeffres (T.D.), Mazzeo (R.), Rubinstein (Y.A).— Kähler-Einstein metrics with edge singularities. Preprint (2011) arXiv:1105.5216.

[38] Legendre (E.).— Toric Kähler-Einstein metrics and convex compact polytopes. arXiv:1112.3239

[39] Kreuzer (M.), Skarke (H.).— PALP: A package for analyzing lattice polytopes with applications to toric geometry. Computer Phys. Comm., 157, p. 87-106 (2004). | MR | Zbl

[40] Li (C.).— Greatest lower bounds on Ricci curvature for toric Fano manifolds. Adv. Math. 226, no. 6, p. 4921-4932 (2011). | MR | Zbl

[41] Li (C.).— Remarks on logarithmic K-stability. arXiv:1104.042

[42] Li (C.), Sun (S.).— Conical Kahler-Einstein metric revisited. arXiv:1207.5011

[43] Li (C.), Xu (C.).— Special test configurations and K-stability of Fano varieties. arXiv:1111.5398

[44] Mabuchi (T.).— Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties. Osaka J. Math. 24, no. 4, p. 705-737 (1987). | MR | Zbl

[45] McCann (R. J.).— Existence and uniqueness of monotone measure-preserving maps, Duke Math. J. 80, no. 2, p. 309-323 (1995). | MR | Zbl

[46] Odaka (Y.).— The GIT stability of Polarized Varieties via Discrepancy. arXiv:0807.1716. | MR

[47] Odaka (Y.), Sun (S.).— Testing log K-stability by blowing up formalism. arXiv:1112.1353

[48] Phong (D. H.), Song (J.), Sturm (J.), Weinkove (B.).— The Moser-Trudinger inequality on Kähler-Einstein manifolds. Amer. J. Math. 130, no. 4, p. 1067-1085 (2008). | MR | Zbl

[49] Rauch (J.), Taylor (B.A.).— The dirichlet problem for the multidimensional monge-ampere equation, Rocky Mountain J. Math. Volume 7, Number 2, p. 345-364 (1977). | MR | Zbl

[50] Rockafellar (R. T.).— Convex analysis. Reprint of the 1970 original. Princeton Landmarks in Mathematics. Princeton Paperbacks. Princeton University Press, Princeton, NJ (1997). | MR | Zbl

[51] Shi (Y.), Zhu (X.H.).— Kähler-Ricci solitons on toric Fano orbifolds. Math. Z. (to appear). preprint arXiv:math/1102.2764 | Zbl

[52] Song (J.), Tian (G.).— The Kähler-Ricci flow through singularities. Preprint (2009) arXiv:0909.4898.

[53] Song (J.), Wang (X.).— The greatest Ricci lower bound, conical Einstein metrics and the Chern number inequality. arXiv:1207.4839

[54] Szkelyhidi (G.).— Greatest lower bounds on the Ricci curvature of Fano manifolds. Compos. Math. 147, no. 1, p. 319-331 (2011). | MR | Zbl

[55] Troyanov (M.).— Metrics of constant curvature on a sphere with two conical singularities. Differential geometry (Pescola, 1988), 296-306, Lecture Notes in Math., 1410. | MR | Zbl

[56] Tian (G.).— Canonical metrics in Kähler geometry. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2000. vi+101 pp. | MR | Zbl

[57] Tian (G.).— Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130, no. 1, p. 1-37 (1997). | MR | Zbl

[58] Tian (G.), Zhu (X.).— Uniqueness of Kähler-Ricci solitons. Acta Math. 184, no. 2, p. 271-305 (2000). | MR | Zbl

[59] Tian (G.), Zhu (X.).— Convergence of Kähler-Ricci flow. J. Amer. Math. Soc. 20, no. 3, p. 675-699 (2007). | MR | Zbl

[60] Wang (X.), Zhu (X.).— Kähler-Ricci solitons on toric manifolds with positive first Chern class, Advances in Mathematics 188, p. 87-103 (2004). | MR | Zbl

[61] Zhou (B.), Zhu (X.).— K-stability on toric manifolds. Proc. Amer. Math. Soc. 136, no. 9, p. 3301-3307 (2008). | MR | Zbl

[62] Zhou (B.), Zhu (X.).— Relative K-stability and modified K-energy on toric manifolds. Adv. Math. 219, no. 4 (2008). | MR | Zbl

[63] Zhou (B.), Zhu (X.).— Minimizing weak solutions for Calabi’s extremal metrics on toric manifolds. Calc. Var. Partial Differential Equations 32, no. 2, p. 191-217 (2008). | MR | Zbl

Cité par Sources :