Nous prouvons la compatibilité entre les correspondances de Langlands locale et globale aux places divisant pour les représentations galoisiennes -adiques associèes à des représentations automorphes cuspidales algébriques et régulières de sur un corps CM qui sont duales de leur conjuguée complexe, sous les hypothèses supplémentaires que ces représentations automorphes ont des vecteurs fixes par un sous-groupe d’Iwahori aux places divisant et ont un poids régulier au sens de Shin.
We prove the compatibility of the local and global Langlands correspondences at places dividing for the -adic Galois representations associated to regular algebraic conjugate self-dual cuspidal automorphic representations of over an imaginary CM field, under the assumption that the automorphic representations have Iwahori-fixed vectors at places dividing and have Shin-regular weight.
@article{AFST_2012_6_21_1_57_0, author = {Barnet-Lamb, Thomas and Gee, Toby and Geraghty, David and Taylor, Richard}, title = {Local-global compatibility for $l=p$, {I}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {57--92}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 21}, number = {1}, year = {2012}, doi = {10.5802/afst.1329}, zbl = {1259.11057}, mrnumber = {2954105}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1329/} }
TY - JOUR AU - Barnet-Lamb, Thomas AU - Gee, Toby AU - Geraghty, David AU - Taylor, Richard TI - Local-global compatibility for $l=p$, I JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2012 SP - 57 EP - 92 VL - 21 IS - 1 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1329/ DO - 10.5802/afst.1329 LA - en ID - AFST_2012_6_21_1_57_0 ER -
%0 Journal Article %A Barnet-Lamb, Thomas %A Gee, Toby %A Geraghty, David %A Taylor, Richard %T Local-global compatibility for $l=p$, I %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2012 %P 57-92 %V 21 %N 1 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1329/ %R 10.5802/afst.1329 %G en %F AFST_2012_6_21_1_57_0
Barnet-Lamb, Thomas; Gee, Toby; Geraghty, David; Taylor, Richard. Local-global compatibility for $l=p$, I. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 21 (2012) no. 1, pp. 57-92. doi : 10.5802/afst.1329. http://www.numdam.org/articles/10.5802/afst.1329/
[1] Badulescu (A. I.).— Jacquet-Langlands et unitarisabilité, J. Inst. Math. Jussieu 6, no. 3, p. 349-379 (2007). | MR | Zbl
[2] Barnet-Lamb (T.), Gee (T.), Geraghty (D.), and Taylor (R.).— Local-global compatibility for , II (2011).
[3] Barnet-Lamb (T.), Geraghty (D.), Harris (M.), and Taylor (R.).— A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47, no. 1, p. 29-98 (2011). | MR
[4] Caraiani (A.).— Local-global compatibility and the action of monodromy on nearby cycles, preprint arXiv:1010.2188 (2010).
[5] Clozel (L.).— Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, Academic Press, Boston, MA, p. 77-159 (1990). | MR | Zbl
[6] Gillet (H.) and Messing (W.).— Cycle classes and Riemann-Roch for crystalline cohomology, Duke Math. J. 55, no. 3, p. 501-538 (1987). | MR | Zbl
[7] Harris (M.), Shepherd-Barron (N.), and Taylor (R.).— A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) 171, no. 2, p. 779-813 (2010). | MR
[8] Harris (M.) and Taylor (R.).— The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, With an appendix by Vladimir G. Berkovich (2001). | MR | Zbl
[9] Katz (N. M.) and Messing (W.).— Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23, p. 73-77 (1974). | MR | Zbl
[10] Kottwitz (R.).— Stable trace formula: elliptic singular terms, Math. Annalen 275, p. 365-399 (1986). | MR | Zbl
[11] Kottwitz (R. E.).— Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5, no. 2, p. 373-444 (1992). | MR | Zbl
[12] Mantovan (E.).— On the cohomology of certain PEL-type Shimura varieties, Duke Math. J. 129, no. 3, p. 573-610 (2005). | MR | Zbl
[13] Sug Woo Shin.— Galois representations arising from some compact Shimura varieties, Annals of Math. (2) 173, no. 3, p. 1645-1741 (2011). | MR
[14] Taylor (R.) and Yoshida (T.).— Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20, no. 2, p. 467-493 (electronic) (2007). | MR | Zbl
Cité par Sources :