Dans cet article on discute le probème de la distribution des valeurs pour des fonctions méromorphes p-adiques et ses dérivés, et démontre une version généralisée de la conjecture de Hayman pour des fonctions méromorphes p-adiques
In this paper we discuss the value distribution problem for -adic meromorphic functions and their derivatives, and prove a generalized version of the Hayman Conjecture for -adic meromorphic functions.
@article{AFST_2011_6_20_S2_137_0, author = {Khoai, Ha Huy and Hoai An, Vu}, title = {Value distribution problem for $p$-adic meromorphic functions and their derivatives}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {137--151}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 20}, number = {S2}, year = {2011}, doi = {10.5802/afst.1309}, zbl = {1254.30077}, mrnumber = {2858171}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1309/} }
TY - JOUR AU - Khoai, Ha Huy AU - Hoai An, Vu TI - Value distribution problem for $p$-adic meromorphic functions and their derivatives JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2011 SP - 137 EP - 151 VL - 20 IS - S2 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1309/ DO - 10.5802/afst.1309 LA - en ID - AFST_2011_6_20_S2_137_0 ER -
%0 Journal Article %A Khoai, Ha Huy %A Hoai An, Vu %T Value distribution problem for $p$-adic meromorphic functions and their derivatives %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2011 %P 137-151 %V 20 %N S2 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1309/ %R 10.5802/afst.1309 %G en %F AFST_2011_6_20_S2_137_0
Khoai, Ha Huy; Hoai An, Vu. Value distribution problem for $p$-adic meromorphic functions and their derivatives. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Numéro Spécial : Actes du colloque Analyse Complexe et Applications en l’honneur de Nguyen Than Van, Tome 20 (2011) no. S2, pp. 137-151. doi : 10.5802/afst.1309. http://www.numdam.org/articles/10.5802/afst.1309/
[1] Alotaibi (A.).— On the Zeros of for , Computational Methods and Function Theory, Vol. 4, No.1, p. 227-235 (2004). | MR | Zbl
[2] Bergweiler (W.) and Eremenko (A.).— On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11, p. 355-373 (1995). | MR | Zbl
[3] Boutabaa (A.) and Escassut (A.).— Urs and Ursim for p-adic meromorphic functions inside a disk, Proc. Edinburgh Math. Soc., 44, p. 485-504 (2001). | MR | Zbl
[4] Chen (H. H.) and Fang (M. L.).— On the value distribution of Sci. China Ser. A, 38, p. 789-798 (1995). | MR | Zbl
[5] Clunie (J.).— On a result of Hayman, J. London Math. Soc. 42, p. 389-392 (1967). | MR | Zbl
[6] Escassut (A.).— Analytic Elements in P-dic Analysis, World Scientific Publishing (1995). | MR | Zbl
[7] Ha Huy Khoai.— On p-adic meromorphic functions, Duke Math. J. 50, p. 695-711 (1983). | MR | Zbl
[8] Ha Huy Khoai.— Height of -adic holomorphic functions and applications, International Symposium “Holomorphic Mappings, Diophantine Geometry and Related Topics” (Kyoto, 1992). Surikaisekikenkyusho Kokyuroku No. 819, p. 96-105 (1993). | MR
[9] Ha Huy Khoai and Vu Hoai An.— Value distribution for p-adic hypersurfaces, Taiwanese Journal of Mathematics, Vol. 7, No.1, p. 51-67 (2003). | MR | Zbl
[10] Ha Huy Khoai and My Vinh Quang.— On p-adic Nevanlinna theory, Lecture Notes in Math. 1351, p. 146-158 (1988). | MR | Zbl
[11] Hayman (W. K.).— Picard values of meromorphic functions and their derivativesAnn. Math. (2) 70, p. 9-42 (1959). | MR | Zbl
[12] Hayman (W. K.).— Research Problems in Function Theory, The Athlone Press University of London, London (1967). | MR | Zbl
[13] Hu (P.C.) and Yang (C.C.).— Meromorphic functions over Non-Archimedean fields, Kluwer Academic Publishers (2000). | MR | Zbl
[14] Lahiri (I.) and Dewan (S.).— Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J. 26, 95-100 (2003). | MR | Zbl
[15] Nevo (Sh.), Pang (X. C.) and Zalcman (L.).— Picard-Hayman behavior of derivatives of meromorphic functions with multiple zeros, Electronic Research Announcements of the American Mathematical Society, Volume 12, p. 37-43 (March 31, 2006). | MR | Zbl
[16] Ojeda (J.).— Hayman’s conjecture in a -adic field, Taiwanese J. Math. 12, N.9, p. 2295-2313 (2008). | MR | Zbl
[17] Pang (X. C.), Nevo (Sh.) and Zalcman (L.).— Quasinormal families of meromorphic functions, Rev. Mat. Iberoamericana 21, p. 249-262 (2005). | MR | Zbl
Cité par Sources :