Nous montrons que les feuilletages holomorphes induits par les applications rationnelles quasi-homogènes remplissent les composantes irréductibles de l’espace
We show that the singular holomorphic foliations induced by dominant quasi-homogeneous rational maps fill out irreducible components of the space
@article{AFST_2009_6_18_4_685_0, author = {Cukierman, F. and Pereira, J. V. and Vainsencher, I.}, title = {Stability of foliations induced by rational maps}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {685--715}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 18}, number = {4}, year = {2009}, doi = {10.5802/afst.1221}, zbl = {1208.32029}, mrnumber = {2590385}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1221/} }
TY - JOUR AU - Cukierman, F. AU - Pereira, J. V. AU - Vainsencher, I. TI - Stability of foliations induced by rational maps JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2009 SP - 685 EP - 715 VL - 18 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1221/ DO - 10.5802/afst.1221 LA - en ID - AFST_2009_6_18_4_685_0 ER -
%0 Journal Article %A Cukierman, F. %A Pereira, J. V. %A Vainsencher, I. %T Stability of foliations induced by rational maps %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2009 %P 685-715 %V 18 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1221/ %R 10.5802/afst.1221 %G en %F AFST_2009_6_18_4_685_0
Cukierman, F.; Pereira, J. V.; Vainsencher, I. Stability of foliations induced by rational maps. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 18 (2009) no. 4, pp. 685-715. doi : 10.5802/afst.1221. http://www.numdam.org/articles/10.5802/afst.1221/
[1] Calvo-Andrade (O.).— Deformations of branched Lefschetz pencils. Bol. Soc. Brasil. Mat. (N.S.) 26, no. 1, p. 67-83 (1995). | MR | Zbl
[2] Cerveau (D.) and Lins Neto (A.).— Irreducible components of the space of holomorphic foliations of degree two in CP(n). Ann. of Math., 143, p. 577-612 (1996). | MR | Zbl
[3] Coutinho (S. C.) and Pereira (J. V.).— On the density of algebraic foliations without algebraic invariant sets, Crelle’s J. reine angew. Math. 594, p. 117-135 (2006). | MR | Zbl
[4] Cukierman (F.) and Pereira (J. V.).— Stability of Holomorphic Foliations with Split Tangent Sheaf, preprint (Arxiv). To appear in American J. of Math. | MR
[5] Cukierman (F.), Pereira (J. V.) and Vainsencher (I.).— preprint http://arxiv.org/abs/0709.4072
[6] Fulton (W.).— Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag (1998). | MR | Zbl
[7] Gómez-Mont (X.) and Lins Neto (A.).— Structural stability of singular holomorphic foliations having a meromorphic first integral. Topology 30, no. 3, p. 315-334 (1991). | MR | Zbl
[8] Grauert (H.) and Remmert (R.).— Theory of Stein spaces. Springer-Verlag (1979). | MR | Zbl
[9] Greuel (G.-M.), Pfister (G.), and Schönemann (H.).— Singular 3.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2005). http://www.singular.uni-kl.de. | Zbl
[10] Hartshorne (R.).— Algebraic Geometry, Springer-Verlarg, (1977). | MR | Zbl
[11] Jouanolou (J. P.).— Équations de Pfaff algébriques. Lecture Notes in Mathematics, 708. Springer, Berlin, (1979). | MR | Zbl
[12] Katz (S.) and Stromme (S.A.).— Schubert: a maple package for intersection theory, http://www.mi.uib.no/schubert/
[13] de Medeiros (A.).— Singular foliations and differential
[14] Muciño-Raymundo (J.).— Deformations of holomorphic foliations having a meromorphic first integral. J. Reine Angew. Math. 461, p. 189-219 (1995). | MR | Zbl
[15] Saito (K.).— On a generalization of de-Rham lemma. Ann. Inst.Fourier (Grenoble) 26, no. 2, vii, p. 165-170 (1976). | Numdam | MR | Zbl
[16] Scárdua (B.).— Transversely affine and transversely projective holomorphic foliations. Ann. Sci. École Norm. Sup. (4) 30, no. 2, p. 169-204 (1997). | Numdam | MR | Zbl
[17] Vainsencher (I.).— http://www.mat.ufmg.br/
Cité par Sources :