On étudie une classe d’équations aux différences finies, nonlinéaires, possédants une solution formelle en forme de série -Gevrey qui, en général, n’est pas Borel-sommable. En utilisant des inverses à droite d’un opérateur aux différences associé, définies sur des espaces Banach de quasi-fonctions, on démontre qu’à la solution formelle peut être associée, de façon unique, une solution analytique sur un domaine approprié, qui est une accéléro-somme de la solution formelle.
We study a class of nonlinear difference equations admitting a -Gevrey formal power series solution which, in general, is not - (or Borel-) summable. Using right inverses of an associated difference operator on Banach spaces of so-called quasi-functions, we prove that this formal solution can be lifted to an analytic solution in a suitable domain of the complex plane and show that this analytic solution is an accelero-sum of the formal power series.
@article{AFST_2008_6_17_2_309_0, author = {Immink, G.K}, title = {Exact asymptotics of nonlinear difference equations with levels $1$ and $1^+$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {309--356}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 17}, number = {2}, year = {2008}, doi = {10.5802/afst.1185}, zbl = {1160.39003}, mrnumber = {2487857}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1185/} }
TY - JOUR AU - Immink, G.K TI - Exact asymptotics of nonlinear difference equations with levels $1$ and $1^+$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2008 SP - 309 EP - 356 VL - 17 IS - 2 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1185/ DO - 10.5802/afst.1185 LA - en ID - AFST_2008_6_17_2_309_0 ER -
%0 Journal Article %A Immink, G.K %T Exact asymptotics of nonlinear difference equations with levels $1$ and $1^+$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2008 %P 309-356 %V 17 %N 2 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1185/ %R 10.5802/afst.1185 %G en %F AFST_2008_6_17_2_309_0
Immink, G.K. Exact asymptotics of nonlinear difference equations with levels $1$ and $1^+$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 17 (2008) no. 2, pp. 309-356. doi : 10.5802/afst.1185. http://www.numdam.org/articles/10.5802/afst.1185/
[1] Braaksma (B.L.J.), Faber ( B.F.), and Immink (G.K.).— Summation of formal solutions of a class of linear difference equations, Pacific Journal of Mathematics, 195, 1, p. 35–65 (2000). | MR | Zbl
[2] Écalle (J.).— Les Fonctions Résurgentes, tome III, Publ. Math. d’Orsay, Université de Paris-Sud, Paris (1985). | Zbl
[3] Écalle (J.).— The acceleration operators and their applications, In Proc. Internat. Congr. Math., Kyoto (1990), Vol. 2, pages 1249–1258, Springer-Verlag (1991). | MR | Zbl
[4] Écalle (J.).— Cohesive functions and weak accelerations. Journal d’An. Math., 60:71–97, 1993. | Zbl
[5] Immink (G.K.).— Asymptotics of analytic difference equations. In Lecture Notes in Mathematics 1085, Berlin, 1984. Springer Verlag. | MR | Zbl
[6] Immink (G.K.).— On the summability of the formal solutions of a class of inhomogeneous linear difference equations, Funk. Ekv., 39-3, p. 469–490 (1996). | MR | Zbl
[7] Immink (G.K.).— A particular type of summability of divergent power series, with an application to difference equations, Asymptotic Analysis, 25, p. 123–148 (2001). | MR | Zbl
[8] Immink (G.K.).— Summability of formal solutions of a class of nonlinear difference equations, Journal of Difference Equations and Applications, 7, p. 105–126 (2001). | MR | Zbl
[9] Immink (G.K.).— Existence theorem for nonlinear difference equations, Asymptotic Analysis, 44, p.173–220 (2005). | MR | Zbl
[10] Immink (G.K.).— Gevrey type solutions of nonlinear difference equations, Asymptotic Analysis, 50, p. 205–237 (2006). | MR | Zbl
[11] Praagman (C.).— The formal classification of linear difference operators, In Proceedings Kon. Nederl. Ac. van Wetensch., ser. A, 86 (2), pages 249–261 (1983). | MR | Zbl
[12] Ramis (J.P.).— Séries divergentes et théories asymptotiques, In Panoramas et synthèses, volume 121, pages 651–684. Soc. Math. France, Paris (1993). | MR | Zbl
[13] Wasow (W.).— Asymptotic Expansions for Ordinary Differential Equations, Interscience Publishers, New York (1965). | MR | Zbl
Cité par Sources :