Nous démontrons la version involutive du théorème de Joly et Becker : une algèbre à division admet un ordre involutif de niveau
We prove the
@article{AFST_2008_6_17_1_81_0, author = {Klep, Igor and Velu\v{s}\v{c}ek, Dejan}, title = {The {Joly{\textendash}Becker} theorem for $*${\textendash}orderings}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {81--92}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 17}, number = {1}, year = {2008}, doi = {10.5802/afst.1177}, mrnumber = {2464095}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1177/} }
TY - JOUR AU - Klep, Igor AU - Velušček, Dejan TI - The Joly–Becker theorem for $*$–orderings JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2008 SP - 81 EP - 92 VL - 17 IS - 1 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1177/ DO - 10.5802/afst.1177 LA - en ID - AFST_2008_6_17_1_81_0 ER -
%0 Journal Article %A Klep, Igor %A Velušček, Dejan %T The Joly–Becker theorem for $*$–orderings %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2008 %P 81-92 %V 17 %N 1 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1177/ %R 10.5802/afst.1177 %G en %F AFST_2008_6_17_1_81_0
Klep, Igor; Velušček, Dejan. The Joly–Becker theorem for $*$–orderings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 17 (2008) no. 1, pp. 81-92. doi : 10.5802/afst.1177. http://www.numdam.org/articles/10.5802/afst.1177/
[Be] Becker (E.).— Summen
[BHR] Becker (E.), Harman (J.), Rosenberg (A.).— Signatures of fields and extension theory, J. Reine Angew. Math. 330, p. 53-75 (1982). | MR | Zbl
[Ci1] Cimprič (J.).— Higher product levels of noncommutative rings, Comm. Algebra 29, p. 193-200 (2001). | MR | Zbl
[Ci2] Cimprič (J.).— Valuation theory of higher level
[CV] Cimprič (J.), Velušček (D.).— Higher product levels of domains, J. Pure Appl. Algebra 198, p. 67-74 (2005). | MR | Zbl
[Cr1] Craven (T.).— Witt rings and orderings of skew fields, J. Algebra 77, p. 74-96 (1982). | MR | Zbl
[Cr2] Craven (T.).— Approximation properties for orderings on
[Cr3] Craven (T.).— Orderings and valuations on
[CS] Craven (T.), Smith (T.).— Ordered
[E] Endler (O.).— Valuation Theory, Springer-Verlag, 1972. | MR | Zbl
[Ho1] Holland (S.).—
[Ho2] Holland (S.).— Strong orderings on
[Jo] Joly (J.-R.).— Sommes de puissances
[K] Klep (I.).— On valuations, places and graded rings associated to
[KV1] Klep (I.), Velušček (D.).—
[KV2] Klep (I.), Velušček (D.).— Central extensions of
[Ma1] Marshall (M.).—
[Ma2] Marshall (M.).—
[Mo] Morandi (P.).— The Henselianization of a valued division algebra, J. Algebra 122, 232-243 (1989). | MR | Zbl
[Po1] Powers (V.).— Higher level reduced Witt rings of skew fields, Math. Z. 198, p. 545-554 (1988). | MR | Zbl
[Po2] Powers (V.).— Holomorphy rings and higher level orders on skew fields, J. Algebra 136, p. 51-59 (1991). | MR | Zbl
Cité par Sources :