The Joly–Becker theorem for *–orderings
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 17 (2008) no. 1, pp. 81-92.

Nous démontrons la version involutive du théorème de Joly et Becker : une algèbre à division admet un ordre involutif de niveau n si et seulement si elle admet un ordre involutif de niveau n pour un certain (puis tout) impair . Dans le cas d’une algèbre à division avec une unité imaginaire ou d’un corps commutatif, nous présentons des résultats plus forts : si une algèbre à division avec unité imaginaire admet un ordre involutif de niveau supérieur, elle admet aussi un ordre involutif de niveau 1. Tout corps admettant un ordre involutif de niveau supérieur admet un ordre involutif de niveau 1 ou 2.

We prove the *–version of the Joly–Becker theorem: a skew field admits a *–ordering of level n iff it admits a *–ordering of level n for some (resp. all) odd . For skew fields with an imaginary unit and fields stronger results are given: a skew field with imaginary unit that admits a *–ordering of higher level also admits a *–ordering of level 1. Every field that admits a *–ordering of higher level admits a *–ordering of level 1 or 2

DOI : 10.5802/afst.1177
Klep, Igor 1 ; Velušček, Dejan 2

1 Univerza v Ljubljani, Oddelek za matematiko Inštituta za matematiko, fiziko in mehaniko, Jadranska 19, SI–1111 Ljubljana, Slovenia
2 University of Ljubljana, Faculty of Mathematics and Physics, Department of Mathematics, Jadranska 19, SI–1000 Ljubljana, Slovenia.
@article{AFST_2008_6_17_1_81_0,
     author = {Klep, Igor and Velu\v{s}\v{c}ek, Dejan},
     title = {The {Joly{\textendash}Becker} theorem for $*${\textendash}orderings},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {81--92},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 17},
     number = {1},
     year = {2008},
     doi = {10.5802/afst.1177},
     mrnumber = {2464095},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1177/}
}
TY  - JOUR
AU  - Klep, Igor
AU  - Velušček, Dejan
TI  - The Joly–Becker theorem for $*$–orderings
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2008
SP  - 81
EP  - 92
VL  - 17
IS  - 1
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1177/
DO  - 10.5802/afst.1177
LA  - en
ID  - AFST_2008_6_17_1_81_0
ER  - 
%0 Journal Article
%A Klep, Igor
%A Velušček, Dejan
%T The Joly–Becker theorem for $*$–orderings
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2008
%P 81-92
%V 17
%N 1
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1177/
%R 10.5802/afst.1177
%G en
%F AFST_2008_6_17_1_81_0
Klep, Igor; Velušček, Dejan. The Joly–Becker theorem for $*$–orderings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 17 (2008) no. 1, pp. 81-92. doi : 10.5802/afst.1177. http://www.numdam.org/articles/10.5802/afst.1177/

[Be] Becker (E.).— Summen n-ter Potenzen in Körpern, J. Reine Angew. Math. 307/308, p. 8-30 (1979). | MR | Zbl

[BHR] Becker (E.), Harman (J.), Rosenberg (A.).— Signatures of fields and extension theory, J. Reine Angew. Math. 330, p. 53-75 (1982). | MR | Zbl

[Ci1] Cimprič (J.).— Higher product levels of noncommutative rings, Comm. Algebra 29, p. 193-200 (2001). | MR | Zbl

[Ci2] Cimprič (J.).— Valuation theory of higher level *-signatures, J. Pure Appl. Algebra 194, p. 239-262 (2004). | MR

[CV] Cimprič (J.), Velušček (D.).— Higher product levels of domains, J. Pure Appl. Algebra 198, p. 67-74 (2005). | MR | Zbl

[Cr1] Craven (T.).— Witt rings and orderings of skew fields, J. Algebra 77, p. 74-96 (1982). | MR | Zbl

[Cr2] Craven (T.).— Approximation properties for orderings on *-fields, Trans. Amer. Math. Soc. 310, no. 2, p. 837-850 (1988). | MR | Zbl

[Cr3] Craven (T.).— Orderings and valuations on *-fields, Rocky Mountain J. Math. 19, p. 629-646 (1989). | MR | Zbl

[CS] Craven (T.), Smith (T.).— Ordered *-rings, J. Algebra 238, p. 314-327 (2001). | MR | Zbl

[E] Endler (O.).— Valuation Theory, Springer-Verlag, 1972. | MR | Zbl

[Ho1] Holland (S.).— *-valuations and ordered *-fields, Trans. Amer. Math. Soc. 262, p. 219-243 (1980). | MR | Zbl

[Ho2] Holland (S.).— Strong orderings on *-fields, J. Algebra 101, p. 16-46 (1986). | MR | Zbl

[Jo] Joly (J.-R.).— Sommes de puissances d-iemes dans un anneau commutatif (French), Acta Arith. 17, p. 37-114 (1970). | MR | Zbl

[K] Klep (I.).— On valuations, places and graded rings associated to *-orderings, Canad. Math. Bull. 50, p. 105-112 (2007). | MR

[KV1] Klep (I.), Velušček (D.).— n-real valuations and the higher level version of the Krull-Baer theorem, J. Algebra 279, p. 345-361 (2004). | MR | Zbl

[KV2] Klep (I.), Velušček (D.).— Central extensions of *-ordered skew fields, Manuscripta Math. 120, 391-402 (2006). | MR | Zbl

[Ma1] Marshall (M.).— *-orderings on a ring with involution, Comm. Algebra 28, p. 1157-1173 (2000). | MR | Zbl

[Ma2] Marshall (M.).— *-orderings and *-valuations on algebras of finite Gelfand-Kirillov dimension, J. Pure Appl. Algebra 179, p. 252-271 (2003). | MR | Zbl

[Mo] Morandi (P.).— The Henselianization of a valued division algebra, J. Algebra 122, 232-243 (1989). | MR | Zbl

[Po1] Powers (V.).— Higher level reduced Witt rings of skew fields, Math. Z. 198, p. 545-554 (1988). | MR | Zbl

[Po2] Powers (V.).— Holomorphy rings and higher level orders on skew fields, J. Algebra 136, p. 51-59 (1991). | MR | Zbl

Cité par Sources :