On étudie un système magneto-hydro-dynamique tridimensionnel dans le cas de l’espace entier
Three-dimensional anisotropic magneto-hydrodynamical system is investigated in the whole space
@article{AFST_2008_6_17_1_1_0, author = {Ben Ameur, Jamel and Selmi, Ridha}, title = {Study of {Anisotropic} {MHD} system in {Anisotropic} {Sobolev} spaces}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1--22}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 17}, number = {1}, year = {2008}, doi = {10.5802/afst.1172}, zbl = {1149.76054}, mrnumber = {2464090}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1172/} }
TY - JOUR AU - Ben Ameur, Jamel AU - Selmi, Ridha TI - Study of Anisotropic MHD system in Anisotropic Sobolev spaces JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2008 SP - 1 EP - 22 VL - 17 IS - 1 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1172/ DO - 10.5802/afst.1172 LA - en ID - AFST_2008_6_17_1_1_0 ER -
%0 Journal Article %A Ben Ameur, Jamel %A Selmi, Ridha %T Study of Anisotropic MHD system in Anisotropic Sobolev spaces %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2008 %P 1-22 %V 17 %N 1 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1172/ %R 10.5802/afst.1172 %G en %F AFST_2008_6_17_1_1_0
Ben Ameur, Jamel; Selmi, Ridha. Study of Anisotropic MHD system in Anisotropic Sobolev spaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 17 (2008) no. 1, pp. 1-22. doi : 10.5802/afst.1172. http://www.numdam.org/articles/10.5802/afst.1172/
[1] Benameur (J.), Ghazel (M.) and Majdoub (M.).— About MHD System With Small Parameter, Asymptotic Analysis, 41, 1, p. 1-21, (2005) . | MR | Zbl
[2] Benameur (J.), Ibrahim (S.) and Majdoub (M.).— Asymptotic Study of a Magneto-HydroDynamic System, Differential and Integral Equations, 18, 3, p. 299-324, (2004). | MR
[3] Chemin (J.-Y.), Desjardins (B.), Gallagher (I.) and Grenier (E.).— Anisotropy and Dispersion in Rotating Fluids, M2AN. Math. Numer.Anal., 34, 2, p. 315-335, (2000). | Numdam | MR | Zbl
[4] Desjardins (B.), Dormy (E.) and Grenier (E.).— Stability of Mixed Ekman-Hartmann Boundary Layers, Nonlinearity 12, p. 181-199, (1999). | MR | Zbl
[5] Dormy (E.).— Modélisation Numérique de la Dynamo Terrestre, Institut de Physique de Globe de Paris, Place Jussieu, 75005 Paris, France, 1997.
[6] Ginibre (J.) and Velo (G.).— Generalized Strichartz Inequalities for the Wave Equations, Journal of Functional Analysis, 133, p. 50-68, (1995). | MR | Zbl
[7] Iftimie (D.).— Resolution of the Navier-Stokes Equations in Anisotropic Spaces, Revista Matemática Iberoamericana, 15, no. 1, p. 1-36, (1999). | MR | Zbl
[8] Iftimie (D.).— A uniqueness Result for the Navier-Stokes Equations with Vanishing Vertical Viscosity, SIAM J. MATH. ANAL, 33, no. 6, p. 1483-1493, (2002). | MR | Zbl
[9] Lions (J.-L.) and Magenes (E.).— Problème aux Limites Non Homogènes et Applications. Vol. 1 Dunod, Paris, 1968. | MR | Zbl
[10] Pedlosky (J.).— Geophysical Fluid Dynamics, Springer Verlag, New York, 1987. | Zbl
[11] Selmi (R.).— Convergence Results for MHD System, International Journal of Mathematics and Mathematical Sciences 2006 (2006), Article ID 28704, 19 pages. | MR | Zbl
Cité par Sources :