Nous utilisons des systèmes partiellement hyperboliques [HPS] pour trouver des singularités d’indice
We use the theory of partially hyperbolic systems [HPS] in order to find singularities of index
@article{AFST_2008_6_17_1_193_0, author = {Morales, C. A}, title = {Poincar\'e-Hopf index and partial hyperbolicity}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {193--206}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 17}, number = {1}, year = {2008}, doi = {10.5802/afst.1180}, mrnumber = {2464098}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1180/} }
TY - JOUR AU - Morales, C. A TI - Poincaré-Hopf index and partial hyperbolicity JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2008 SP - 193 EP - 206 VL - 17 IS - 1 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1180/ DO - 10.5802/afst.1180 LA - en ID - AFST_2008_6_17_1_193_0 ER -
%0 Journal Article %A Morales, C. A %T Poincaré-Hopf index and partial hyperbolicity %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2008 %P 193-206 %V 17 %N 1 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1180/ %R 10.5802/afst.1180 %G en %F AFST_2008_6_17_1_193_0
Morales, C. A. Poincaré-Hopf index and partial hyperbolicity. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 17 (2008) no. 1, pp. 193-206. doi : 10.5802/afst.1180. http://www.numdam.org/articles/10.5802/afst.1180/
[ABS] Afraimovich (V.S.), Bykov (V. V.), Shilnikov (L. P.).— On attracting structurally unstable limit sets of Lorenz attractor type (Russian) Trudy Moskov. Mat. Obshch. 44, 150-212 (1982). | MR | Zbl
[B] Bautista (S.).— Sobre conjuntos singulares-hiperbólicos, Thesis Universidade Federal do Rio de Janeiro (2005).
[BMo] Bautista (S.), Morales (C.).— Existence of periodic orbits for singular-hyperbolic sets, Mosc. Math. J. 6, no. 2, 265-297 (2006). | MR | Zbl
[BM] Bing (R. H.), Martin (J. M.), Cubes with knotted holes, Trans. Amer. Math. Soc. 155, 217-231 (1971). | MR | Zbl
[BDV] Bonatti (C.), Diaz (L.), Viana (M.).— Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective, Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, III. Springer-Verlag, Berlin, 2005. | MR | Zbl
[Br] Brunella (M.).— Separating basic sets of a nontransitive Anosov flow, Bull. London Math. Soc. 25, 487-490 (1993). | MR | Zbl
[CMV] Cima (A.), Mañosas (F.), Villadelprat (J.).— A Poincaré-Hopf theorem for noncompact manifolds, (English. English summary) Topology 37, no. 2, 261-277 (1998). | MR | Zbl
[C] Conley (C.).— Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, 38. American Mathematical Society, Providence, R.I., 1978. | MR | Zbl
[DO] Dancer (E. N.), Ortega (R.).— The index of Lyapunov stable fixed points in two dimensions, (English. English summary) J. Dynam. Differential Equations 6, no. 4, 631-637 (1994). | MR | Zbl
[E] Eliashberg (Ya. M.).— Combinatorial methods in symplectic geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 531-539, Amer. Math. Soc., Providence, RI, 1987. | MR | Zbl
[F] Franks (J.).— Rotation vectors and fixed points of area preserving surface diffeomorphisms, (English. English summary) Trans. Amer. Math. Soc. 348, no. 7, 2637-2662 (1996). | MR | Zbl
[G] Gabai (D.).— 3 lectures on foliations and laminations on 3-manifolds, Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998), 87-109, Contemp. Math., 269, Amer. Math. Soc., Providence, RI, 2001. | MR | Zbl
[GT] Gilmore (R.), Tsankov (T.).— Topological aspects of the structure of chaotic attractors in
[GW] Guckenheimer (J.), Williams (R.).— Structural stability of Lorenz attractors, Publ Math IHES 50, 59-72 (1979). | Numdam | MR | Zbl
[GMZ] Grines (V. Z.), Medvedev (V. S.), Zhuzhoma (E. V.).— New relations for Morse-Smale systems with trivially embedded one-dimensional separatrices, (Russian) Mat. Sb. 194, no. 7, 25-56; translation in Sb. Math. 194 (2003), no. 7-8, 979-1007 (2003). | MR | Zbl
[HK] Hasselblatt (B.), Katov (A.).— Introduction to the modern theory of dynamical systems, Cambridge University Press, Cambridge (1995). | MR | Zbl
[HPS] Hirsch (M.), Pugh (C.), Shub (M.).— Invariant manifolds, Lec. Not. in Math. 583 (1977), Springer-Verlag. | MR | Zbl
[L] Le Calvez (P.).— Une propriété dynamique des homéomorphismes du plan au voisinage d’un point fixe d’indice
[M] Matsumoto (S.).— Arnold conjecture for surface homeomorphisms (English. English summary) Proceedings of the French-Japanese Conference “Hyperspace Topologies and Applications" (La Bussiére, 1997). Topology Appl. 104, no. 1-3, 191-214 (2000). | Zbl
[Mi] Milnor (J.).— Topology from the differentiable viewpoint, Based on notes by David W. Weaver The University Press of Virginia, Charlottesville, Va. 1965. | MR | Zbl
[M1] Morales (C.).— Examples of singular-hyperbolic attracting sets, Dyn. Syst. (To appear). | MR | Zbl
[MPP1] Morales (C.), Pacifico (M. J.), Pujals (E. R.).— Strange attractors across the boundary of hyperbolic systems, Comm. Math. Phys. 211, no. 3, 527-558 (2000). | MR | Zbl
[MPP2] Morales (C.), Pacifico (M. J.), Pujals (E. R.).— Singular-hyperbolic systems, Proc. Amer. Math. Soc. 127, no. 11, 3393-3401 (1999). | MR | Zbl
[MPu] Morales (C.), Pujals (E. R.).— Singular strange attractors on the boundary of Morse-Smale systems, Ann. Sci. École Norm. Sup. (4) 30, no. 6, 693-717 (1997). | Numdam | MR | Zbl
[PdM] Palis (J.), de Melo (W.).— Geometric theory of dynamical systems. An introduction., Translated from the Portuguese by A. K. Manning. Springer-Verlag, New York- Berlin, 1982. | MR | Zbl
Cité par Sources :