Cet article est consacré à l’étude des fluides incompressibles à densité variable dans
On établit un résultat d’existence et d’unicité sur un intervalle de temps indépendant de la viscosité
En appendice, on démontre des estimations a priori de type elliptique dans des espaces de Sobolev à indice positif ou négatif.
This paper is devoted to the study of smooth flows of density-dependent fluids in
Existence and uniqueness is stated on a time interval independent of the viscosity
An appendix is devoted to the proof of elliptic estimates in Sobolev spaces with positive or negative regularity indices, interesting for their own sake.
@article{AFST_2006_6_15_4_637_0, author = {Danchin, Rapha\"el}, title = {The inviscid limit for density-dependent incompressible fluids}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {637--688}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 15}, number = {4}, year = {2006}, doi = {10.5802/afst.1133}, mrnumber = {2295208}, language = {en}, url = {https://www.numdam.org/articles/10.5802/afst.1133/} }
TY - JOUR AU - Danchin, Raphaël TI - The inviscid limit for density-dependent incompressible fluids JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2006 SP - 637 EP - 688 VL - 15 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1133/ DO - 10.5802/afst.1133 LA - en ID - AFST_2006_6_15_4_637_0 ER -
%0 Journal Article %A Danchin, Raphaël %T The inviscid limit for density-dependent incompressible fluids %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2006 %P 637-688 %V 15 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U https://www.numdam.org/articles/10.5802/afst.1133/ %R 10.5802/afst.1133 %G en %F AFST_2006_6_15_4_637_0
Danchin, Raphaël. The inviscid limit for density-dependent incompressible fluids. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 4, pp. 637-688. doi : 10.5802/afst.1133. https://www.numdam.org/articles/10.5802/afst.1133/
[1] Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, 22, North-Holland Publishing Co., Amsterdam, 1990 (Translated from the Russian) | MR | Zbl
[2] Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Communications in Mathematical Physics, Volume 94 (1984), pp. 61-66 | MR | Zbl
[3] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales Scientifiques de l’école Normale Supérieure, Volume 14 (1981), pp. 209-246 | Numdam | MR | Zbl
[4] Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, Journal d’Analyse Mathématique, Volume 77 (1999), pp. 25-50 | MR | Zbl
[5] Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, 1988 | MR | Zbl
[6] A few remarks on the Camassa-Holm equation, Differential and Integral Equations, Volume 14 (2001), pp. 953-988 | MR | Zbl
[7] Density-dependent incompressible fluids in critical spaces, Proceedings of the Royal Society of Edinburgh, Volume 133A (2003), pp. 1311-1334 | MR | Zbl
[8] Local and global well-posedness results for flows of inhomogeneous viscous fluids, Advances in Differential Equations, Volume 9 (2004), pp. 353-386 | MR | Zbl
[9] Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients, Revista Matemática Iberoamericana, Volume 21 (2005), pp. 861-886 | MR | Zbl
[10] Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space, Differential and Integral Equations, Volume 10 (1997), pp. 587-598 | MR | Zbl
[11] On the equation of nonstationary stratified fluid motion: uniqueness and existence of the solutions, Journal of the Faculty of Sciences of the University of Tokyo, Volume 30 (1984), pp. 615-643 | MR | Zbl
[12] Commutator estimates and the Euler and Navier-Stokes equations, Communications on Pure and Applied Mathematics, Volume 41 (1988), pp. 891-907 | MR | Zbl
[13] The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Mathematische Zeitschrift, Volume 242 (2002), pp. 251-278 | MR | Zbl
[14] The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids, Journal of Soviet Mathematics, Volume 9 (1978), pp. 697-749 | Zbl
[15] Mathematical Topics in Fluid Dynamics, Incompressible Models, 1, Oxford University Press, 1996 | MR | Zbl
[16] Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin, 1996 no. 3 | MR | Zbl
[17] Hydrodynamics in Besov spaces, Archive for Rational Mechanics and Analysis, Volume 145 (1998), pp. 197-214 | MR | Zbl
- Global unique solutions for the 2-D inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion, AIMS Mathematics, Volume 9 (2024) no. 11, p. 29806 | DOI:10.3934/math.20241443
- On 2D incompressible and density-dependent Navier–Stokes equations: global stabilization under dynamic Couette flow, Computational and Applied Mathematics, Volume 43 (2024) no. 8 | DOI:10.1007/s40314-024-02659-w
- Well-posedness theory for non-homogeneous incompressible fluids with odd viscosity, Journal de Mathématiques Pures et Appliquées, Volume 187 (2024), p. 58 | DOI:10.1016/j.matpur.2024.05.006
- On the Mass Transfer in the 3D Pitaevskii Model, Journal of Mathematical Fluid Mechanics, Volume 26 (2024) no. 3 | DOI:10.1007/s00021-024-00877-0
- Small-data global existence of solutions for the Pitaevskii model of superfluidity, Nonlinearity, Volume 37 (2024) no. 6, p. 065009 | DOI:10.1088/1361-6544/ad3cae
- Global well-posedness for 2D inhomogeneous asymmetric fluids with large initial data, Science China Mathematics, Volume 67 (2024) no. 3, p. 527 | DOI:10.1007/s11425-022-2099-1
- Local Well-Posedness of Incompressible Micropolar Equations in Critical Besov Spac-es, Advances in Applied Mathematics, Volume 12 (2023) no. 05, p. 2561 | DOI:10.12677/aam.2023.125257
- Time decay and stability of solutions for the 3D density-dependent incompressible Boussinesq system, Discrete and Continuous Dynamical Systems - B, Volume 28 (2023) no. 4, p. 2694 | DOI:10.3934/dcdsb.2022188
- Elsässer formulation of the ideal MHD and improved lifespan in two space dimensions, Journal de Mathématiques Pures et Appliquées, Volume 169 (2023), p. 189 | DOI:10.1016/j.matpur.2022.11.012
- On the Global Well-Posedness of the 3D Axisymmetric Resistive MHD Equations, Annales Henri Poincaré, Volume 23 (2022) no. 8, p. 2877 | DOI:10.1007/s00023-021-01146-w
- Fast rotation limit for the 2-D non-homogeneous incompressible Euler equations, Journal of Mathematical Analysis and Applications, Volume 512 (2022) no. 1, p. 126140 | DOI:10.1016/j.jmaa.2022.126140
- Inviscid Limit of 3D Nonhomogeneous Navier–Stokes Equations with Slip Boundary Conditions, Mathematics, Volume 10 (2022) no. 21, p. 3999 | DOI:10.3390/math10213999
- Global Well-Posedness for the 2-D Inhomogeneous Incompressible Navier-Stokes System with Large Initial Data in Critical Spaces, Archive for Rational Mechanics and Analysis, Volume 242 (2021) no. 3, p. 1533 | DOI:10.1007/s00205-021-01710-y
- Incompressible inhomogeneous fluids in bounded domains of R3 with bounded density, Journal of Functional Analysis, Volume 278 (2020) no. 5, p. 108394 | DOI:10.1016/j.jfa.2019.108394
- On global solutions of gravity driven nonhomogeneous viscous flows in a bounded domain, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 10, p. 3654 | DOI:10.1002/mma.5603
- The combined inviscid and non-resistive limit for the nonhomogeneous incompressible magnetohydrodynamic equations with Navier boundary conditions, Acta Mathematica Scientia, Volume 38 (2018) no. 6, p. 1655 | DOI:10.1016/s0252-9602(18)30838-5
- Global Axisymmetric Solutions of Three Dimensional Inhomogeneous Incompressible Navier–Stokes System with Nonzero Swirl, Archive for Rational Mechanics and Analysis, Volume 223 (2017) no. 2, p. 817 | DOI:10.1007/s00205-016-1046-3
- Vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier–Stokes equations with a slip boundary condition, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 16, p. 5925 | DOI:10.1002/mma.4443
- Fluid Flow Modeling, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 1 | DOI:10.1007/978-3-319-63781-5_1
- Asymptotic Analysis: An Introduction, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 145 | DOI:10.1007/978-3-319-63781-5_4
- Singular Limits: Low Stratification, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 167 | DOI:10.1007/978-3-319-63781-5_5
- Weak Solutions, A Priori Estimates, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 21 | DOI:10.1007/978-3-319-63781-5_2
- Stratified Fluids, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 221 | DOI:10.1007/978-3-319-63781-5_6
- Interaction of Acoustic Waves with Boundary, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 263 | DOI:10.1007/978-3-319-63781-5_7
- Problems on Large Domains, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 313 | DOI:10.1007/978-3-319-63781-5_8
- Vanishing Dissipation Limits, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 369 | DOI:10.1007/978-3-319-63781-5_9
- Acoustic Analogies, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 409 | DOI:10.1007/978-3-319-63781-5_10
- Appendix, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 429 | DOI:10.1007/978-3-319-63781-5_11
- Existence Theory, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 49 | DOI:10.1007/978-3-319-63781-5_3
- Bibliographical Remarks, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 501 | DOI:10.1007/978-3-319-63781-5_12
- Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation, Discrete and Continuous Dynamical Systems, Volume 36 (2016) no. 12, p. 6921 | DOI:10.3934/dcds.2016101
- On the well-posedness of 2-D incompressible Navier–Stokes equations with variable viscosity in critical spaces, Journal of Differential Equations, Volume 260 (2016) no. 8, p. 6604 | DOI:10.1016/j.jde.2016.01.007
- Global Existence in Critical Spaces for Density-Dependent Incompressible Viscoelastic Fluids, Acta Applicandae Mathematicae, Volume 130 (2014) no. 1, p. 51 | DOI:10.1007/s10440-013-9838-z
- Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity, Journal of Functional Analysis, Volume 267 (2014) no. 5, p. 1488 | DOI:10.1016/j.jfa.2014.06.002
- On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations, Discrete and Continuous Dynamical Systems, Volume 33 (2013) no. 8, p. 3517 | DOI:10.3934/dcds.2013.33.3517
- Well-posedness of 3-D inhomogeneous Navier–Stokes equations with highly oscillatory initial velocity field, Journal de Mathématiques Pures et Appliquées, Volume 100 (2013) no. 2, p. 166 | DOI:10.1016/j.matpur.2012.10.015
- Global well‐posedness result for density‐dependent incompressible viscous fluid in with linearly growing initial velocity, Mathematical Methods in the Applied Sciences, Volume 36 (2013) no. 8, p. 921 | DOI:10.1002/mma.2649
- On the Nonhomogeneous Navier–Stokes System with Navier Friction Boundary Conditions, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 4, p. 2576 | DOI:10.1137/12089380x
- Density-dependent incompressible viscous fluid flow subject to linearly growing initial data, Applicable Analysis, Volume 91 (2012) no. 8, p. 1477 | DOI:10.1080/00036811.2011.608160
- On the Wellposedness of Three-Dimensional Inhomogeneous Navier–Stokes Equations in the Critical Spaces, Archive for Rational Mechanics and Analysis, Volume 204 (2012) no. 1, p. 189 | DOI:10.1007/s00205-011-0473-4
- Large Time Behavior of Density-Dependent Incompressible Navier–Stokes Equations on Bounded Domains, Journal of Mathematical Fluid Mechanics, Volume 14 (2012) no. 3, p. 471 | DOI:10.1007/s00021-011-0076-8
- The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces, Journal de Mathématiques Pures et Appliquées, Volume 96 (2011) no. 3, p. 253 | DOI:10.1016/j.matpur.2011.04.005
- Relaxation-time limit of the multidimensional bipolar hydrodynamic model in Besov space, Journal of Differential Equations, Volume 251 (2011) no. 11, p. 3143 | DOI:10.1016/j.jde.2011.07.018
- Global well-posedness for the Euler–Boussinesq system with axisymmetric data, Journal of Functional Analysis, Volume 260 (2011) no. 3, p. 745 | DOI:10.1016/j.jfa.2010.10.012
- On the well-posedness of the incompressible density-dependent Euler equations in theLpframework, Journal of Differential Equations, Volume 248 (2010) no. 8, p. 2130 | DOI:10.1016/j.jde.2009.09.007
- Least action principle and the incompressible Euler equations with variable density, Transactions of the American Mathematical Society, Volume 363 (2010) no. 5, p. 2641 | DOI:10.1090/s0002-9947-2010-05206-7
- Sur l'unicité pour le système de Boussinesq avec diffusion non linéaire, Journal de Mathématiques Pures et Appliquées, Volume 91 (2009) no. 1, p. 80 | DOI:10.1016/j.matpur.2008.09.004
- Well‐posed problem of a pollutant model of the Kazhikhov–Smagulov type, Mathematical Methods in the Applied Sciences, Volume 32 (2009) no. 12, p. 1467 | DOI:10.1002/mma.1093
- Résultats de régularité de solutions axisymétriques pour le système de Navier–Stokes, Bulletin des Sciences Mathématiques, Volume 132 (2008) no. 7, p. 592 | DOI:10.1016/j.bulsci.2007.10.001
- Strong solutions and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system, Journal d'Analyse Mathématique, Volume 105 (2008) no. 1, p. 169 | DOI:10.1007/s11854-008-0034-4
- Well-Posedness in Critical Spaces for Barotropic Viscous Fluids with Truly Not Constant Density, Communications in Partial Differential Equations, Volume 32 (2007) no. 9, p. 1373 | DOI:10.1080/03605300600910399
Cité par 51 documents. Sources : Crossref