The inviscid limit for density-dependent incompressible fluids
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 4, pp. 637-688.

Cet article est consacré à l’étude des fluides incompressibles à densité variable dans N ou 𝕋N. On cherche à généraliser plusieurs résultats classiques pour les équations d’Euler et de Navier-Stokes incompressibles.

On établit un résultat d’existence et d’unicité sur un intervalle de temps indépendant de la viscosité μ du fluide ainsi qu’un critère d’explosion faisant intervenir la norme du tourbillon dans L1(0,T;L). On montre en outre que si les équations d’Euler ont une solution régulière sur un intervalle de temps [0,T0] donné alors les équations de Navier-Stokes avec mêmes données et petite viscosité ont une solution régulière sur le même intervalle de temps. De plus la solution visqueuse tend vers la solution d’Euler quand la viscosité tend vers 0. Le taux de convergence dans L2 est de l’ordre de μ.

En appendice, on démontre des estimations a priori de type elliptique dans des espaces de Sobolev à indice positif ou négatif.

This paper is devoted to the study of smooth flows of density-dependent fluids in N or in the torus 𝕋N. We aim at extending several classical results for the standard Euler or Navier-Stokes equations, to this new framework.

Existence and uniqueness is stated on a time interval independent of the viscosity μ when μ goes to 0. A blow-up criterion involving the norm of vorticity in L1(0,T;L) is also proved. Besides, we show that if the density-dependent Euler equations have a smooth solution on a given time interval [0,T0], then the density-dependent Navier-Stokes equations with the same data and small viscosity have a smooth solution on [0,T0]. The viscous solution tends to the Euler solution when the viscosity μ goes to 0. The rate of convergence in L2 is of order μ.

An appendix is devoted to the proof of elliptic estimates in Sobolev spaces with positive or negative regularity indices, interesting for their own sake.

DOI : 10.5802/afst.1133
Danchin, Raphaël 1

1 Centre de Mathématiques, Univ. Paris 12, 61 av. du Général de Gaulle, 94010 Créteil Cedex, France
@article{AFST_2006_6_15_4_637_0,
     author = {Danchin, Rapha\"el},
     title = {The inviscid limit for density-dependent incompressible fluids},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {637--688},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 15},
     number = {4},
     year = {2006},
     doi = {10.5802/afst.1133},
     mrnumber = {2295208},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1133/}
}
TY  - JOUR
AU  - Danchin, Raphaël
TI  - The inviscid limit for density-dependent incompressible fluids
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2006
SP  - 637
EP  - 688
VL  - 15
IS  - 4
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1133/
DO  - 10.5802/afst.1133
LA  - en
ID  - AFST_2006_6_15_4_637_0
ER  - 
%0 Journal Article
%A Danchin, Raphaël
%T The inviscid limit for density-dependent incompressible fluids
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2006
%P 637-688
%V 15
%N 4
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1133/
%R 10.5802/afst.1133
%G en
%F AFST_2006_6_15_4_637_0
Danchin, Raphaël. The inviscid limit for density-dependent incompressible fluids. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 4, pp. 637-688. doi : 10.5802/afst.1133. https://www.numdam.org/articles/10.5802/afst.1133/

[1] (S.), Antontsev; (A.), Kazhikhov; (V.), Monakhov Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, 22, North-Holland Publishing Co., Amsterdam, 1990 (Translated from the Russian) | MR | Zbl

[2] (J.), Beale; (T.), Kato; (A.), Majda Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Communications in Mathematical Physics, Volume 94 (1984), pp. 61-66 | MR | Zbl

[3] (J.-M.), Bony Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales Scientifiques de l’école Normale Supérieure, Volume 14 (1981), pp. 209-246 | Numdam | MR | Zbl

[4] (J.-Y.), Chemin Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, Journal d’Analyse Mathématique, Volume 77 (1999), pp. 25-50 | MR | Zbl

[5] (P.), Constantin; (C.), Foias Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, 1988 | MR | Zbl

[6] (R.), Danchin A few remarks on the Camassa-Holm equation, Differential and Integral Equations, Volume 14 (2001), pp. 953-988 | MR | Zbl

[7] (R.), Danchin Density-dependent incompressible fluids in critical spaces, Proceedings of the Royal Society of Edinburgh, Volume 133A (2003), pp. 1311-1334 | MR | Zbl

[8] (R.), Danchin Local and global well-posedness results for flows of inhomogeneous viscous fluids, Advances in Differential Equations, Volume 9 (2004), pp. 353-386 | MR | Zbl

[9] (R.), Danchin Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients, Revista Matemática Iberoamericana, Volume 21 (2005), pp. 861-886 | MR | Zbl

[10] (B.), Desjardins Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space, Differential and Integral Equations, Volume 10 (1997), pp. 587-598 | MR | Zbl

[11] (H.), Okamoto On the equation of nonstationary stratified fluid motion: uniqueness and existence of the solutions, Journal of the Faculty of Sciences of the University of Tokyo, Volume 30 (1984), pp. 615-643 | MR | Zbl

[12] (T.), Kato; (G.), Ponce Commutator estimates and the Euler and Navier-Stokes equations, Communications on Pure and Applied Mathematics, Volume 41 (1988), pp. 891-907 | MR | Zbl

[13] (H.), Kozono; (T.), Ogawa; (Y.), Taniuchi The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Mathematische Zeitschrift, Volume 242 (2002), pp. 251-278 | MR | Zbl

[14] (O.), Ladyzhenskaya; (V.), Solonnikov The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids, Journal of Soviet Mathematics, Volume 9 (1978), pp. 697-749 | Zbl

[15] (P.-L.), Lions Mathematical Topics in Fluid Dynamics, Incompressible Models, 1, Oxford University Press, 1996 | MR | Zbl

[16] (T.), Runst; (W.), Sickel Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin, 1996 no. 3 | MR | Zbl

[17] (M), Vishik Hydrodynamics in Besov spaces, Archive for Rational Mechanics and Analysis, Volume 145 (1998), pp. 197-214 | MR | Zbl

  • Wang, Xi; Ke, Xueli Global unique solutions for the 2-D inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion, AIMS Mathematics, Volume 9 (2024) no. 11, p. 29806 | DOI:10.3934/math.20241443
  • Xue, Ling; Zhang, Min; Zhao, Kun; Zheng, Xiaoming On 2D incompressible and density-dependent Navier–Stokes equations: global stabilization under dynamic Couette flow, Computational and Applied Mathematics, Volume 43 (2024) no. 8 | DOI:10.1007/s40314-024-02659-w
  • Fanelli, Francesco; Granero-Belinchón, Rafael; Scrobogna, Stefano Well-posedness theory for non-homogeneous incompressible fluids with odd viscosity, Journal de Mathématiques Pures et Appliquées, Volume 187 (2024), p. 58 | DOI:10.1016/j.matpur.2024.05.006
  • Jang, Juhi; Jayanti, Pranava Chaitanya; Kukavica, Igor On the Mass Transfer in the 3D Pitaevskii Model, Journal of Mathematical Fluid Mechanics, Volume 26 (2024) no. 3 | DOI:10.1007/s00021-024-00877-0
  • Jang, Juhi; Chaitanya Jayanti, Pranava; Kukavica, Igor Small-data global existence of solutions for the Pitaevskii model of superfluidity, Nonlinearity, Volume 37 (2024) no. 6, p. 065009 | DOI:10.1088/1361-6544/ad3cae
  • Qian, Chenyin; He, Beibei; Zhang, Ting Global well-posedness for 2D inhomogeneous asymmetric fluids with large initial data, Science China Mathematics, Volume 67 (2024) no. 3, p. 527 | DOI:10.1007/s11425-022-2099-1
  • 邓, 迎伊 Local Well-Posedness of Incompressible Micropolar Equations in Critical Besov Spac-es, Advances in Applied Mathematics, Volume 12 (2023) no. 05, p. 2561 | DOI:10.12677/aam.2023.125257
  • Liu, Xiaopan; Zhang, Qingshan Time decay and stability of solutions for the 3D density-dependent incompressible Boussinesq system, Discrete and Continuous Dynamical Systems - B, Volume 28 (2023) no. 4, p. 2694 | DOI:10.3934/dcdsb.2022188
  • Cobb, Dimitri; Fanelli, Francesco Elsässer formulation of the ideal MHD and improved lifespan in two space dimensions, Journal de Mathématiques Pures et Appliquées, Volume 169 (2023), p. 189 | DOI:10.1016/j.matpur.2022.11.012
  • Hassainia, Zineb On the Global Well-Posedness of the 3D Axisymmetric Resistive MHD Equations, Annales Henri Poincaré, Volume 23 (2022) no. 8, p. 2877 | DOI:10.1007/s00023-021-01146-w
  • Sbaiz, Gabriele Fast rotation limit for the 2-D non-homogeneous incompressible Euler equations, Journal of Mathematical Analysis and Applications, Volume 512 (2022) no. 1, p. 126140 | DOI:10.1016/j.jmaa.2022.126140
  • Li, Hongmin; Hui, Yuanxian; Zhao, Zhong Inviscid Limit of 3D Nonhomogeneous Navier–Stokes Equations with Slip Boundary Conditions, Mathematics, Volume 10 (2022) no. 21, p. 3999 | DOI:10.3390/math10213999
  • Abidi, Hammadi; Gui, Guilong Global Well-Posedness for the 2-D Inhomogeneous Incompressible Navier-Stokes System with Large Initial Data in Critical Spaces, Archive for Rational Mechanics and Analysis, Volume 242 (2021) no. 3, p. 1533 | DOI:10.1007/s00205-021-01710-y
  • Farwig, Reinhard; Qian, Chenyin; Zhang, Ping Incompressible inhomogeneous fluids in bounded domains of R3 with bounded density, Journal of Functional Analysis, Volume 278 (2020) no. 5, p. 108394 | DOI:10.1016/j.jfa.2019.108394
  • Wang, Na; Hu, Yuxi On global solutions of gravity driven nonhomogeneous viscous flows in a bounded domain, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 10, p. 3654 | DOI:10.1002/mma.5603
  • ZHANG, Zhipeng The combined inviscid and non-resistive limit for the nonhomogeneous incompressible magnetohydrodynamic equations with Navier boundary conditions, Acta Mathematica Scientia, Volume 38 (2018) no. 6, p. 1655 | DOI:10.1016/s0252-9602(18)30838-5
  • Chen, Hui; Fang, Daoyuan; Zhang, Ting Global Axisymmetric Solutions of Three Dimensional Inhomogeneous Incompressible Navier–Stokes System with Nonzero Swirl, Archive for Rational Mechanics and Analysis, Volume 223 (2017) no. 2, p. 817 | DOI:10.1007/s00205-016-1046-3
  • Chen, Pengfei; Xiao, Yuelong; Zhang, Hui Vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier–Stokes equations with a slip boundary condition, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 16, p. 5925 | DOI:10.1002/mma.4443
  • Feireisl, Eduard; Novotný, Antonín Fluid Flow Modeling, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 1 | DOI:10.1007/978-3-319-63781-5_1
  • Feireisl, Eduard; Novotný, Antonín Asymptotic Analysis: An Introduction, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 145 | DOI:10.1007/978-3-319-63781-5_4
  • Feireisl, Eduard; Novotný, Antonín Singular Limits: Low Stratification, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 167 | DOI:10.1007/978-3-319-63781-5_5
  • Feireisl, Eduard; Novotný, Antonín Weak Solutions, A Priori Estimates, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 21 | DOI:10.1007/978-3-319-63781-5_2
  • Feireisl, Eduard; Novotný, Antonín Stratified Fluids, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 221 | DOI:10.1007/978-3-319-63781-5_6
  • Feireisl, Eduard; Novotný, Antonín Interaction of Acoustic Waves with Boundary, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 263 | DOI:10.1007/978-3-319-63781-5_7
  • Feireisl, Eduard; Novotný, Antonín Problems on Large Domains, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 313 | DOI:10.1007/978-3-319-63781-5_8
  • Feireisl, Eduard; Novotný, Antonín Vanishing Dissipation Limits, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 369 | DOI:10.1007/978-3-319-63781-5_9
  • Feireisl, Eduard; Novotný, Antonín Acoustic Analogies, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 409 | DOI:10.1007/978-3-319-63781-5_10
  • Feireisl, Eduard; Novotný, Antonín Appendix, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 429 | DOI:10.1007/978-3-319-63781-5_11
  • Feireisl, Eduard; Novotný, Antonín Existence Theory, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 49 | DOI:10.1007/978-3-319-63781-5_3
  • Feireisl, Eduard; Novotný, Antonín Bibliographical Remarks, Singular Limits in Thermodynamics of Viscous Fluids (2017), p. 501 | DOI:10.1007/978-3-319-63781-5_12
  • Han, Bin; Wei, Changhua Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation, Discrete and Continuous Dynamical Systems, Volume 36 (2016) no. 12, p. 6921 | DOI:10.3934/dcds.2016101
  • Xu, Huan; Li, Yongsheng; Zhai, Xiaoping On the well-posedness of 2-D incompressible Navier–Stokes equations with variable viscosity in critical spaces, Journal of Differential Equations, Volume 260 (2016) no. 8, p. 6604 | DOI:10.1016/j.jde.2016.01.007
  • Fang, Daoyuan; Han, Bin; Zhang, Ting Global Existence in Critical Spaces for Density-Dependent Incompressible Viscoelastic Fluids, Acta Applicandae Mathematicae, Volume 130 (2014) no. 1, p. 51 | DOI:10.1007/s10440-013-9838-z
  • Gui, Guilong Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity, Journal of Functional Analysis, Volume 267 (2014) no. 5, p. 1488 | DOI:10.1016/j.jfa.2014.06.002
  • Zi, Ruizhao; Fang, Daoyuan On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations, Discrete and Continuous Dynamical Systems, Volume 33 (2013) no. 8, p. 3517 | DOI:10.3934/dcds.2013.33.3517
  • Abidi, Hammadi; Gui, Guilong; Zhang, Ping Well-posedness of 3-D inhomogeneous Navier–Stokes equations with highly oscillatory initial velocity field, Journal de Mathématiques Pures et Appliquées, Volume 100 (2013) no. 2, p. 166 | DOI:10.1016/j.matpur.2012.10.015
  • Fang, Daoyuan; Han, Bin; Zhang, Ting Global well‐posedness result for density‐dependent incompressible viscous fluid in with linearly growing initial velocity, Mathematical Methods in the Applied Sciences, Volume 36 (2013) no. 8, p. 921 | DOI:10.1002/mma.2649
  • Ferreira, Lucas C. F.; Planas, Gabriela; Villamizar-Roa, Elder J. On the Nonhomogeneous Navier–Stokes System with Navier Friction Boundary Conditions, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 4, p. 2576 | DOI:10.1137/12089380x
  • Fang, Daoyuan; Hieber, Matthias; Zhang, Ting Density-dependent incompressible viscous fluid flow subject to linearly growing initial data, Applicable Analysis, Volume 91 (2012) no. 8, p. 1477 | DOI:10.1080/00036811.2011.608160
  • Abidi, Hammadi; Gui, Guilong; Zhang, Ping On the Wellposedness of Three-Dimensional Inhomogeneous Navier–Stokes Equations in the Critical Spaces, Archive for Rational Mechanics and Analysis, Volume 204 (2012) no. 1, p. 189 | DOI:10.1007/s00205-011-0473-4
  • Zhao, Kun Large Time Behavior of Density-Dependent Incompressible Navier–Stokes Equations on Bounded Domains, Journal of Mathematical Fluid Mechanics, Volume 14 (2012) no. 3, p. 471 | DOI:10.1007/s00021-011-0076-8
  • Danchin, Raphaël; Fanelli, Francesco The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces, Journal de Mathématiques Pures et Appliquées, Volume 96 (2011) no. 3, p. 253 | DOI:10.1016/j.matpur.2011.04.005
  • Li, Yeping; Zhang, Ting Relaxation-time limit of the multidimensional bipolar hydrodynamic model in Besov space, Journal of Differential Equations, Volume 251 (2011) no. 11, p. 3143 | DOI:10.1016/j.jde.2011.07.018
  • Hmidi, Taoufik; Rousset, Frédéric Global well-posedness for the Euler–Boussinesq system with axisymmetric data, Journal of Functional Analysis, Volume 260 (2011) no. 3, p. 745 | DOI:10.1016/j.jfa.2010.10.012
  • Danchin, Raphaël On the well-posedness of the incompressible density-dependent Euler equations in theLpframework, Journal of Differential Equations, Volume 248 (2010) no. 8, p. 2130 | DOI:10.1016/j.jde.2009.09.007
  • Lopes Filho, Milton; Nussenzveig Lopes, Helena; Precioso, Juliana Least action principle and the incompressible Euler equations with variable density, Transactions of the American Mathematical Society, Volume 363 (2010) no. 5, p. 2641 | DOI:10.1090/s0002-9947-2010-05206-7
  • Abidi, Hammadi Sur l'unicité pour le système de Boussinesq avec diffusion non linéaire, Journal de Mathématiques Pures et Appliquées, Volume 91 (2009) no. 1, p. 80 | DOI:10.1016/j.matpur.2008.09.004
  • Fang, Daoyuan; Fang, Lin Well‐posed problem of a pollutant model of the Kazhikhov–Smagulov type, Mathematical Methods in the Applied Sciences, Volume 32 (2009) no. 12, p. 1467 | DOI:10.1002/mma.1093
  • Abidi, Hammadi Résultats de régularité de solutions axisymétriques pour le système de Navier–Stokes, Bulletin des Sciences Mathématiques, Volume 132 (2008) no. 7, p. 592 | DOI:10.1016/j.bulsci.2007.10.001
  • Germain, Pierre Strong solutions and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system, Journal d'Analyse Mathématique, Volume 105 (2008) no. 1, p. 169 | DOI:10.1007/s11854-008-0034-4
  • Danchin, R. Well-Posedness in Critical Spaces for Barotropic Viscous Fluids with Truly Not Constant Density, Communications in Partial Differential Equations, Volume 32 (2007) no. 9, p. 1373 | DOI:10.1080/03605300600910399

Cité par 51 documents. Sources : Crossref