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Riemann existence theorem and construction
of real algebraic curves 

STEPAN YU. OREVKOV (1)

Annales de la Faculté des Sciences de Toulouse Vol. XII, n° 4, 2003
p

ABSTRACT. - We propose a method of construction of plane real alge-
braic curves given by y3-p(x)y+q(x) = 0 which has a prescribed arrange-
ment on the affine plane. The construction is based on a consideration of
the arrangement of f -1 (RP 1 ) on CP 1 where f : CP1 ~ CP 1 is the ho-
mogenized discriminant, i.e. the rational function defined by f (x) = D/q2,
D = 4p3 + 27q2.

As examples of applications, we construct some M-curves of degrees
7 and 9 on RP2 whose realizability was unknown.

RÉSUMÉ. - On propose une méthode de construction des courbes algébri-
ques réelles planes données par y3 + p(x)y+q(x) = 0, qui ont un arrange-
ment prescrit sur le plan affine. La construction est basée sur la con-
sidération de l’arrangement de f-1(RP1) sur CP1, où f : Cpl -1- CP1
est le discriminant homogénéisé, i.e. la fonction rationnelle définie par

f(x)=D/q2,D=4p3+27q2.
Comme exemple d’applications, on construit certaines M-courbes de

degrés 7 et 9 sur RP2 dont la réalisabilité n’était pas connue.

1. Introduction

In this paper we propose a method of construction of plane real alge-
braic curves given by F(x, y) = 0, degy F = 3 (trigonal curves) which have
a prescribed arrangement on the affine plane. This method allows one to
obtain a complete classification of such curves (singular or not) up to fiber-
wise isotopies of the plane (we call an isotopy fiberwise if the image of any
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vertical line at any moment is a vertical line). In particular, this means that
the same method may provide some restrictions for trigonal curves.

This result will be published in the next paper. Here we just illustrate
the method of construction by a realization of a complex M-scheme(2) of
degree 7 and some real AI-schemes of degree 9 on RP2 whose realizability
was previously unknown.

The proposed method was inspired by a construction of extremal poly-
nomials for the Davenport’s bound deg (p3 - q2)  1 + (degp)/2 in terms of
so-called "dessins d’enfant" (see Sect. 3).

PROPOSITION 1.1. There exists an M-curve of degree 9 on Rp2
whose real scheme is (J U 18&#x3E; U 114&#x3E; U 4).

Following [3], we say that a curve of degree 7 on RP2 has a jump if it
contains 5 ovals arranged with respect to some line as it is shown in Figure 1.

Figure 1 Figure 2 Figure 3

PROPOSITION 1.2. 2013 There exists an M-curve of degree 7 on RP2 with
out a jump whose complex scheme is ( J U 5+ U 4- U 1+ (2+ U 3_~~.

Combined with the results of [13, 3, 9, 10, 4], Proposition 1.2 provide
the classification of complex schemes of M-curves of degree 7 without
jump (for curves with jump, this classification is already completed in th
papers cited above).

In Sect. 5 (Proposition 5.1), we prove the realizability of some othe
M-schemes of degree 9. All the curves in Proposition 5.1 are constructec
by glueing affine sextics into a 6-fold singular point of a curve of degree 

(2) See [12] for the definition and notation of real and complex schemes.
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We choose this example because the same glueing was used in [6] but our
method allows us to obtain more curves of degree 9.

2. Preparation

To construct the curves from Propositions 1.1 and 1.2, we first construct
singular curves depicted in Figures 2 and 3 and then perturb the singularities
glueing (see [13]) the affine sextic depicted in Figure 4 (resp. quartic in
Figure 5) into the 6-fold (resp. quadruple) point.

Figure 4 (see [6]) Figure 5 Figure 6

Denote by Fn the Hirzebruch surface of degree n and let En be the excep-
tional section (whose self-intersection is -n). In particular, Fo = P1 P1 and
FI is the blown-up P2. Let 03C0n : Fn - P 1 be the fibration with fiber P 1.
The surfaces Fl, F2, ... can be obtained from Fo by successive birational

transformations Fo 03B20(p0) F1 03B21(p1) F203B22(p2) ... where /3n is the blowup of a
point pn E En followed by the blowdown of the strict transform of the fiber
03C0-1n(03C0n(pn)). If the points Po, Pl, are real then all Fn are also real. Let
us denote the set of real points of Fn by RFn.

We present RFn in pictures as a rectangle obtained by cutting RFn
along En (horizontal edges) and a fiber (vertical edges). The interior of
such a rectangle corresponds to an affine coordinate system on Fn where a
generic smooth curve C is defined by a polynomial whose Newton polygon
is (0, 0)-(1 + kn, 0)-(1, k)-(0, k) where k (resp. l) is the intersection of C with
a fiber (resp. with En). We call (k, l) the bidegree of C. The action of 03B2n
(for an even n) on RFn is shown in Figure 6. We see in this picture that
RFn is a torus for an even n and a Klein bottle for an odd n.

Since RFI is the blown-up RP2, the existence of the curve in Figure 2
(resp. Figure 3) follows from the existence of a curve of bidegree (3, 6) (resp.
(3,4)) arranged on RFI as it is shown in Figure 7 (resp. Figure 8).
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Figure 7 Figure 8

If a curve C of bidegree (k, l) on Fn has multiplicity m at the point pn
then the strict transform of C on Fn+1 under /3n(Pn) has bidegree (k, l - m) .
Hence, applying /31 (psi) o...o03B2~(ph) to the curve C in Figure 7 for h = 6 and
{p1 ... ph} = C n El, we obtain the curve of bidegree (3, 0) on F7 whose real
part is depicted in the upper part of Figure 9. Analogously, for h = 4, we
obtain Figure 10 from Figure 8. The isolated points in Figure 9 and Figure 10
are simple double points with imaginary tangents (like x2 -f- y2 = 0). The
curves in Figure 9 and Figure 10 will be constructed in Sect. 4.

Figure 9

Figure 10
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Let p(t), q(t) E C[t], deg p = 2k, deg q = 3k and set

Suppose r is not identically zero. How small can be deg r? This question
was posed in [1] in 1965. The same year Davenport [2] had shown that
deg r  k + 1 but it was unknown if the estimate is sharp. This estimate
is very natural. Indeed, if we write p = t2k + a1t2k-2 + ... + a2k-1, q =
t3k + blt3k-2 +... + b3k-1 with indeterminate coefficients then the condition
deg r  k + 1 imposes 5k - 2 equations that is equal exactly to the number
of the unknowns. However, it is very hard to show algebraically that this
system has solutions other than p = s2, q = s3, s = tk + c1tk-2 + ... + Ck-1-

Stothers [11] proved the sharpness of Davenport’s estimate for any k. His
result was rediscovered by Zannier [14]. A. Zvonkin gave another (?) elegant
proof but he did not publish it because he claims that his proof coincides
with the Zannier’s one. However, he kindly permitted us to publish his proof
and we do it in this section.

The main idea is to divide the both sides of (3.1) by q2 . Denote the
obtained rational function by f. Then f(t) = r/q2 = p3/q2 + 1. This means
that 

(i) f has 3k poles of multiplicity 2 at the roots of q,

(ii) the equation f = 1 has 2k triple roots at the roots of p,

and if deg r = k + 1 then 

(iii) f has a zero of multiplicity 5k - 1 at t = oo.

Conversely, any rational function f of degree 6k satisfying (i)-(iii), de-
fines the required p and q.

From the topological point of view f is a branched covering CP1~ CP1.
Denote the preimage of the real segment [1, +~] by r. If (i)-(iii) hold then
r is a graph on CP1 whose vertices f -1 (oo) have valence 2 (white vertices)
and the vertices f-1(1) have valence 3 (black vertices). The graph r cuts
CP 1 into polygons homeomorphic to a disc, one of which should have 5k-1
white vertices and 5k - 1 black ones.
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Figure 11

Now we are ready to construct f. Let us start with any binary tree in
S2 with k - 1 triple vertices and k + 1 ends and transform it to the graph 0393

as it is shown in Figure 11. Define the mapping 0393 ~ [1, oo] which takes the
white vertices to 0o and the black vertices to 1, and extend it continuously
to a mapping f : 82 -+ CP 1 which maps each bigon homeomorphically onto
CP1 B [1) oo] and whose restriction onto the polygonal component of S2B0393 is
a branched cyclic covering ramified in a single point to such that f (to ) = 0.
Pull back the complex structure from CP1 to S2. By Riemann’s theorem,
the obtained surface is isomorphic to CP1. Choose the isomorphism so that
it takes to into oo. Than f becomes a rational function satisfying (i)-(iii).

Remark 3.1. - Given any k and coprime a, b, similar arguments allow to
construct polynomials p, q, and r = pb - qa such that deg p = ak, deg q = bk,
deg r = (ab - a - b)k + 1. Like is the case a = 3, b = 2, this is the minimal
possible value for deg r.

4. Construction

Let us construct a curve C of bidegree (3, 0) on Fn (n = 7 or 5) whose
real part is depicted in Figure 9 or Figure 10 respectively. It is defined by a
polynomial whose Newton polygon is the triangle (0, 0)-(3n, 0)-(0, 3). Killing
the coefficient of y2, we rewrite C in the form

The discriminant of (4.1) with respect to y is

Let xo be a root of D ( "*" in Figures 9 and 10). This means that either
xo is the x-coordinate of a double point of C (then xo is a double root of
D) or the vertical line x = xo is tangent to C (a simple root of D). Let
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F(y) = y3 + p(xo)y + q(xo) = (y - y1)(y - y2)2. Since the coefficient of
y2 vanishes, yl and y2 have opposite signs. Hence, q(xo) = F(0) &#x3E; 0 when

y1  y2, and q(xo) - F(0)  0 when y2  yi. This means that the real
roots of q ( "o" in Figures 9 and 10) must separate the root of D where
y1  y2 from those where y2  YI. Thus, to construct C, we need to find
polynomials p(x), q(x), and D(x), satisfying (4.1), (4.2) such that the real
roots of D and q are arranged as in Figures 9 and 10.

Now we apply the main idea of Sect. 3: let us divide (4.2) by q2. The
result is a rational function f (x) = D/q2 = 4p3/q2 + 27 whose poles are
the roots of q taken with multiplicity 2, zeros are the roots of D, and the
solutions of f = 27 are the roots of p taken with multiplicity 3. To construct
f, consider the graph 0393 c S2 depicted in the lower parts of Figures 9 and
10 (since 0393 is symmetric, we show only half of it). Let us map r onto Rpl
according to the coloring in Figure 12 and then continue this mapping up
to a branched covering f : S2 ~ CP 1 sending homeomorphically each com-
ponent of ,S’2 B r onto one of the half-planes of CP 1 B RP 1 in an alternating
order. The additional vertices (which are not mapped onto 0, 27, or oo)
are mapped to arbitrarily chosen points on the corresponding segments of
RP2. Then the pull-back of the complex structure makes f to be a rational
function which has the needed properties. Due to the symmetry principle,
f becomes real in suitable coordinates.

In conclusion of this section, let us give a list of conditions on a colored
embedded graph 0393 C S2 which are sufficient to construct a curve of bidegree
(3, 0) on Fn (these conditions are satisfied in the constructions of Section 5).

(1) The graph r is symmetric with respect to an equator of S3 (which
is included to r) and the coloring of the equator is imposed by the
desired arrangement of the real algebraic curve as it is explained
above;

(2) The valence of each "·" is divisible by 6, and the incident edges are
colored alternatively by the colors of the segments [0,27] and [27, oo];

(3) The valence of each "o" is divisible by 4, and the incident edges are
colored alternatively by the colors of the segments [27, oo] and [oo, 0] ;

(4) The valence of each "*" is even, and the incident edges are colored
alternatively by the colors of the segments [oc, 0] and [0,27];
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(5) The valence of each non-colored vertex is even, and the incident edges
are of the same color;

(6) The sum of the valences of all "*"-vertices is equal to 12n (together
with the conditions (2)-(5), this implies that the sums of the valences
of all "o" - and "2022"-vertices are also equal to 12n);

(7) Each connected component of S3 B 0393 is homeomorphic to an open disk
whose boundary (considered as the set of Carathéodory boundary
elements) is colored as a covering of RP1. Moreover, the orientations
of neighbouring disks induced by the coverings of their boundaries
are opposite.

5. Other M-curves of degree 9

PROPOSITION 5.1. 2013 (a) There exist M-curves of degree 9 whose real
schemes are
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(b) There exist , fiexible(3) M-curves of degree 9 whose real schemes are

Remark 5.2. 2013 The list of the real schemes in Proposition 5.1 is given
is the same format as the list in [5; Theorem 6] (this explains, in particular,
such a strange numbering of the series). We do not include here the M-
schemes which are listed in [5] but we include those which are constructed
in [6] (marked by the asterisk) and in Proposition 1.1.

Remark 5. 3. - We found the following misprints in [5].

In [5; Theorem 6, Series 4], there should be "(03B2,03B3) (5,7), ô = 8, 10"
instead of "(03B2,03B3) = (5,8), 03B4 = 8, 10".

In [5; Theorem 6, Series 5], there should be (03B1,03B2,03B3,03B4) = (1, l, 3,15)
instead of (1,1, 3,13).

In [5; Theorem 7], "a, 03B2, 03B3 - even" in Series 4 means "each of cx, 03B2, 03B3 is

even" whereas "ce, 03B2,03B3,03B4- even" in Series 6 means "one of 03B1, 03B2,03B3 is even".

We shall call central blocks the rectangles depicted in the upper parts
of Figures 13.1-13.5 or their images under the reflection with respect to a
vertical or a horizontal line.

(3) See [12] for the definition of a flexible curve.
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Figure 13.1 Figure 13.2 Figure 13.3

Figure 13.4 Figure 13.5

Figure 14 Figure 15
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LEMMA 5.4. - Let Bo, Boe be two central blocks and ho, hoe the corre-
sponding values of the parameter h (indicated in 13.1-13.5). Then for any
sequence of signs si, .... sp, p  0, there exists a real algebraic curve C

. of bidegree (3, 0) on Fn, n = p + ho + hoo such that the pair (Fn B En, C)
(recall that En C Fn, En = -n) is obtained (up to a fiberwise isotopy, see
the Introduction) by the successive cyclic glueing (according to the arrows)
of the blocks Bo, B(s1),...,B(sp), Boo, B(-sp),...,B(-s1), where B(+),
B(-) are shown in the upper part of Figure 14.

Proof. - Let Do and Doo be the half-discs which are shown in Figures
13.1-13.5 under the blocks Bo and B~, and let D*~ be the inversion image
of Doo. Let D(+) be the half-annulus shown in the lower part of Figure 14
and D(-)be its mirror image. Let us fill the lower half-plane by the domains
Do, D(SI), ... , D(sp), D*~ according to Figure 15, and do symmetrically the
upper half-plane. Let us deal with the obtained graph F in the same way as
in Sect. 4 (in the case 13.4, to construct the mapping of the region A, one
should take a double covering branched at a single point). 0

Example. - We show in Figure 16 how the curve in Figure 9 can be
obtained from the central blocks 13.1 and 13.3 by applying Lemma 5.4
followed by a contracting of an oval into an isolated double point (see Lemma
5.7 below).

COROLLARY 5.5. - Let (s1,...,sp), p  1, si = + 1 , be an arbitrarg
sequence of signs such that s, = 1. Let al, ..., ap be non-negative integers
such that

Then there exists a curve of bidegree (3, 0) on Fp+2 arranges as in Figure 17
with bi = 2ai + 1, i =1,...p.

Proof. - Set Bo = Boo = [the block in Figure 13.1] in Lemma 5.4. ~

COROLLARY 5.6. There exist curves of bidegree (3, 0) arranged on
F7 as in Fgiure 17 with p = 5 and (b1,...,b5) = (15,1,1,1,1), (11,5,1,1,1),
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Figure 17

LEMMA 5.7. - Let A C Fp+2 be a curve constructed in Lemma 5.4 (or
in Corollaries 5.4 and 5.6). Then there exist a nodal curve A’ C Fp+2 of the
same bidegree obtained from A by applying of any number of transformations
shown in Figure 18.

Figure 18 Figure 19

Proof. - Apply the transformations in Figure 19 to the graph h. D

Remark 5.8. 2013 Corollary 5.5 can be easily proved by Viro’s method
using the subdivision of the triangle (0, 0)-(3p+ 6, 0)-(0, 3) into n+ 2 triangles
(3p, 0)-(3p + 3, 0)-(0, 3). However, it is not clear how to prove Lemma 5.7 in
this way.

COROLLARY 5.9. - There exist curves of degree 9 with a simple 6-
fold singular point and 13 ovals distributed as in Figure 20 where a and
b are the number of ovals in the corresponding regions, the exterior ovals
are not shown, and Si = t(a, b) |a + b  10 and a, b are oddl, S2 =
S1~{(1,11)}B{(5,5)}.

Proof. - Apply Lemma 5.7 and the transformation 03B21(p1) ... 03B26(p6)
(see Sect. 2) to the curves from Lemma 5.4. The curves from Corollary 5.6
provide the upper two rows of Figure 20.1. In the other cases, one should
choose the central blocks in Lemma 5.4 in the following way.

The curves in the lower row in Figure 20.1. The left: (13.1 and 13.3) or
(13.1 and 13.5); the middle: (13.1 and 13.4); the right: (13.2 and 13.2).

The curves in Figure 20.2 and 20.3. The upper left curve in each of
Figure 20.2 and 20.3: (13.1 and 13.4); the other curves: (13.1 and 13.2). ~
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Remark 5.10. - It is clear from the construction that any collection of

the tangents at the singular point is realizable in the case of the left curve
in the lower row of Figure 20.1 (it is marked by the asterisk). Unfortunately,
in the other cases this is not so.

Figure 20.1

Figure 20.2
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Figure 20.3

Remark 5.11. - Using the braid-theoretical methods (the Garside nor-
mal form of the braid from [7]), one can prove that Figure 20.1-20.3 contain
all the isotopy types of curves of degree 9 which have a simple six-fold point
and whose perturbation can provide an M-curve of degree 9.

Proof of Proposition 5.1. - (a). Maximal dissipation (see [13]) of a sim-
ple 6-fold singular point are described in [6]. Two more dissipations B2(1, 8,1 )
and A3(0, 5, 5) are constructed in [8]. Applying all the dissipations of the
series A (resp. B or C) to all the curves in Figure 20.1 (resp. Figure 20.2 or
Figure 20.3) one obtains all the required algebraic curves.

(b). Flexible dissipations of the types A4(1, 4, 5), B2 (1, 4, 5), and C2 (1, 3, 6)
are constructed in [7; Sect. 7.2]. Applying them to the singular point of
the curves in Figure 20.1-Figure 20.3, one obtains all the required flexible
curves.
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