@article{AFST_2001_6_10_2_271_0, author = {Djebali, Sma{\"\i}l}, title = {Traveling front solutions for a diffusive epidemic model with external sources}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {271--292}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 10}, number = {2}, year = {2001}, mrnumber = {1896182}, zbl = {0995.92040}, language = {en}, url = {http://www.numdam.org/item/AFST_2001_6_10_2_271_0/} }
TY - JOUR AU - Djebali, Smaïl TI - Traveling front solutions for a diffusive epidemic model with external sources JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2001 SP - 271 EP - 292 VL - 10 IS - 2 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - http://www.numdam.org/item/AFST_2001_6_10_2_271_0/ LA - en ID - AFST_2001_6_10_2_271_0 ER -
%0 Journal Article %A Djebali, Smaïl %T Traveling front solutions for a diffusive epidemic model with external sources %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2001 %P 271-292 %V 10 %N 2 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U http://www.numdam.org/item/AFST_2001_6_10_2_271_0/ %G en %F AFST_2001_6_10_2_271_0
Djebali, Smaïl. Traveling front solutions for a diffusive epidemic model with external sources. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 10 (2001) no. 2, pp. 271-292. http://www.numdam.org/item/AFST_2001_6_10_2_271_0/
[1] Multidimensional nonlinear diffusion arising in population genetics, Adv. Math. (1978), pp. 33-76. | Zbl
) & ). -[2] The Mathematical Theory of Infectious Diseases, Griffin, 1975. | MR | Zbl
). -[3] Traveling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., Vol. 16, No 6 (1985), pp. 1207-1242. | Zbl
), ) & ). -[4] Reaction-Diffusion Equations and their Applications to Biology, Academic Press, 1986. | MR | Zbl
). -[5] Asymptotic behavior for a system describing epidemics with migration and spatial spread of infection, Nonlinear Analysis. Theory, Methods and Applications. Vol. 3 (1979), pp. 663-675. | Zbl
), ) & ). -[6] Traveling wave solutions to a reaction-diffusion system arising in epidemiology, Nonlinear Analysis: Real World Applications, Vol. 2, No 4 (2001), pp. 417-442. | MR | Zbl
). -[7] Mathematical Aspects of Reacting and Diffusing Systems, in Lecture Notes in Biomathematics, No 28, Springer Verlag, 1979. | MR | Zbl
). -[8] Traveling waves for a simple diffusive epidemic model, Math. Models and Meth. in Applied Sciences, Vol. 5, No 7 (1995), pp. 935-966. | Zbl
) & ). -[9] Contributions to the mathematical theory of epidemics, Pro. Roy. Soc., A115 (1927), pp. 700-721. | JFM
) & ). -[10] Degree Theory, Cambridge University Press, 1978. | MR | Zbl
). -[11] Qualitative properties of a nonlinear system for laminar flames without ignition temperature, Nonlinear Analysis. Theory, Methods and Applications. Vol. 9, No 11 (1985), pp.1269-1292. | MR | Zbl
). -[12] Mathematical Biology, Springer Verlag, 1989. | MR | Zbl
). -[13] On nonlinear reaction-diffusion systems, Journal of Mathematical Analysis and Applications, Vol. 87 (1982), pp. 165-198. | MR | Zbl
). -[14] Deterministic Threshold Models in the Theory of Epidemics, Lecture Notes in Biomathematics, Vol. 1, Springer-Verlag, Berlin, New York, 1974. | MR | Zbl
). -[15] The behaviour of some nonlinear diffusion equations for large time, J. Kyoto Univ., Vol. 18, (1978) pp. 453-508. | MR | Zbl
). -