@article{AFST_1999_6_8_4_649_0, author = {Poupaud, F.}, title = {Global smooth solutions of some quasi-linear hyperbolic systems with large data}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {649--659}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 8}, number = {4}, year = {1999}, mrnumber = {1815159}, zbl = {0978.35028}, language = {en}, url = {http://www.numdam.org/item/AFST_1999_6_8_4_649_0/} }
TY - JOUR AU - Poupaud, F. TI - Global smooth solutions of some quasi-linear hyperbolic systems with large data JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1999 SP - 649 EP - 659 VL - 8 IS - 4 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - http://www.numdam.org/item/AFST_1999_6_8_4_649_0/ LA - en ID - AFST_1999_6_8_4_649_0 ER -
%0 Journal Article %A Poupaud, F. %T Global smooth solutions of some quasi-linear hyperbolic systems with large data %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1999 %P 649-659 %V 8 %N 4 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U http://www.numdam.org/item/AFST_1999_6_8_4_649_0/ %G en %F AFST_1999_6_8_4_649_0
Poupaud, F. Global smooth solutions of some quasi-linear hyperbolic systems with large data. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 8 (1999) no. 4, pp. 649-659. http://www.numdam.org/item/AFST_1999_6_8_4_649_0/
[1] On zero pressure gas dynamics. Series on Advances in Mathematics for Applied Sciences, Kinetic Theory and Computing, B. Perthame edt, 22, 1994. | MR | Zbl
). -[2] Equations de transport unidimensionnelles à coefficients discontinus. C.R.A.S. Série 1, 320:1097-1102, 1995 and - One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. TMA, 32: 891-933, 1998. | Zbl
) and ). -[3] Sticky particles and scalar conservation laws. SIAM J. Numer. Anal., 35, no. 6:2317-2328, 1998. | MR | Zbl
) and ). -[4] Compensated compactness and general systems of conservation laws. Trans. Amer. Math. Soc., 292:383-420, 1985. | MR | Zbl
). -[5] Solutions in the large for nonlinear hyperbolic systems of equations. Com. Pure Appl. Math., 18:698-715, 1965. | MR | Zbl
). -[6] Vanishing pressure in gas dynamics equations. ZAMP, 51, no 1: 143-148, 2000. | MR | Zbl
) and ). -[7] Existence de solutions globales et régulières aux équations d'Euler pour un gaz parfait isentropique. C. R. Acad. Sci. Paris Sér. I Math., 325(7):721-726, 1997 and ). - Global smooth solutions to Euler equation for a perfect gas. Indian Univ. Math. J., 47, no 4: 1397-1432, 1998. | MR | Zbl
) and ). -[8] Existence globale pour le système des gaz sans pression. C.R.A.S. Série 1, 321:171-174, 1995. | MR | Zbl
). -[9] Lectures on Nonlinear Hyperbolic Differential Equations,volume 26 of Mathématiques et Applications. Springer, 1997. | MR | Zbl
). -[10] Hyperbolic systems of conservation laws and the mathematical theory of shock waves. In Regional Conf. in Appl. Math., volume 11, pages 1-48, Philadelphia, 1973. | MR | Zbl
). -[11] Generalized solutions of Hamilton-Jacobi equations. Pitman, Boston, 1982. | MR | Zbl
). -[12] Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Comm. in PDE, 22:337-358, 1997. | MR | Zbl
) and ). -[13] Système de lois de conservation I et II. Diderot, Paris, New York, Amsterdam, 1996. | Zbl
). -[14] Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys., 5:84, 1970.
). -