@article{AFST_1998_6_7_3_365_0, author = {Blair, David E.}, title = {Special directions on contact metric manifolds of negative $\xi $-sectional curvature}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {365--378}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 7}, number = {3}, year = {1998}, zbl = {0918.53012}, language = {en}, url = {http://www.numdam.org/item/AFST_1998_6_7_3_365_0/} }
TY - JOUR AU - Blair, David E. TI - Special directions on contact metric manifolds of negative $\xi $-sectional curvature JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1998 SP - 365 EP - 378 VL - 7 IS - 3 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - http://www.numdam.org/item/AFST_1998_6_7_3_365_0/ LA - en ID - AFST_1998_6_7_3_365_0 ER -
%0 Journal Article %A Blair, David E. %T Special directions on contact metric manifolds of negative $\xi $-sectional curvature %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1998 %P 365-378 %V 7 %N 3 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U http://www.numdam.org/item/AFST_1998_6_7_3_365_0/ %G en %F AFST_1998_6_7_3_365_0
Blair, David E. Special directions on contact metric manifolds of negative $\xi $-sectional curvature. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 7 (1998) no. 3, pp. 365-378. http://www.numdam.org/item/AFST_1998_6_7_3_365_0/
[1] Geodesic Flows on closed Riemann Manifolds with Negative Curvature, Proc. Steklov Inst. Math. 90 (1967) (Amer. Math. Soc. translation, 1969). | MR | Zbl
) .-[2] Flows on Homogeneous Spaces, Annals of Math. Studies 53, Princeton, 1963. | Zbl
), ) and ) .-[3] Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc. 5 (1992), pp. 33-74. | MR | Zbl
), ) and ) .-[4] Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., Springer-Verlag, Berlin 509 (1976). | MR | Zbl
) .-[5] Rotational behavior of contact structures on 3-dimensional Lie Groups, Geometry and Topology of submanifolds V (1993), pp. 41-53. | MR | Zbl
) .-[6] On the class of contact metric manifolds with a 3-τ-structure, to appear. | MR
) .-[7] A classification of 3-dimensional contact metric manifolds with Q⊘ = ⊘Q, II, Bull. Inst. Math. Acad. Sinica 20 (1992), pp. 379-383. | MR | Zbl
) and ) .-[8] A classification of 3-dimensional contact metric manifolds with Q⊘ = ⊘Q, Kodai Math. J. 13 (1990), pp. 391-401. | MR | Zbl
), ) and ) .-[9] Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Scient. École Norm. Sup. 20 (1987), pp. 251-270. | Numdam | MR | Zbl
) . -[10] On 3-dimensional contact metric manifolds with ∇ξτ = 0, J. of Geom., to appear. | MR | Zbl
) and ) .-[11] Curvature of left invariant metrics on Lie groups, Adv. in Math. 21 (1976), pp. 293-329. | MR | Zbl
) . -[12] Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier 45 (1995), pp. 1407-1421. | Numdam | MR | Zbl
) .-[13] Torsion and critical metrics on contact three-manifolds, Kodai Math. J. 13 (1990), pp. 88-100. | MR | Zbl
) . -[14] Tangent sphere bundles satisfying ∇ξτ = 0, J. of Geom. 49 (1994), pp. 178-188. | MR | Zbl
) .-[15] Ergodic Theory-Introductory Lectures, Lecture Notes in Math., Springer-Verlag, Berlin, 458 (1975). | MR | Zbl
) . -[16] On the hypothesis of Rabinowitz' periodic orbit theorem, J. Differential Equations, 33 (1978), pp. 353-358. | MR | Zbl
) .-