Weak solutions of quasilinear elliptic PDE's at resonance
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 6 (1997) no. 4, pp. 573-589.
@article{AFST_1997_6_6_4_573_0,
     author = {Arioli, Gianni and Gazzola, Filippo},
     title = {Weak solutions of quasilinear elliptic {PDE's} at resonance},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {573--589},
     publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences},
     address = {Toulouse},
     volume = {Ser. 6, 6},
     number = {4},
     year = {1997},
     mrnumber = {1624294},
     zbl = {0920.35050},
     language = {en},
     url = {http://www.numdam.org/item/AFST_1997_6_6_4_573_0/}
}
TY  - JOUR
AU  - Arioli, Gianni
AU  - Gazzola, Filippo
TI  - Weak solutions of quasilinear elliptic PDE's at resonance
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 1997
SP  - 573
EP  - 589
VL  - 6
IS  - 4
PB  - Université Paul Sabatier. Faculté des sciences
PP  - Toulouse
UR  - http://www.numdam.org/item/AFST_1997_6_6_4_573_0/
LA  - en
ID  - AFST_1997_6_6_4_573_0
ER  - 
%0 Journal Article
%A Arioli, Gianni
%A Gazzola, Filippo
%T Weak solutions of quasilinear elliptic PDE's at resonance
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 1997
%P 573-589
%V 6
%N 4
%I Université Paul Sabatier. Faculté des sciences
%C Toulouse
%U http://www.numdam.org/item/AFST_1997_6_6_4_573_0/
%G en
%F AFST_1997_6_6_4_573_0
Arioli, Gianni; Gazzola, Filippo. Weak solutions of quasilinear elliptic PDE's at resonance. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 6 (1997) no. 4, pp. 573-589. http://www.numdam.org/item/AFST_1997_6_6_4_573_0/

[1] Arcoya (D.) and Boccardo (L.). - Critical points for multiple integrals of the calculus of variations, Arch. Rat. Mech. Anal. 134 (1996), pp. 249-274. | MR | Zbl

[2] Brezis (H.) and Browder (F.E.) . - Sur une propriété des espaces de Sobolev, C. R. Acad. Sc., Paris, 287 (1978), pp. A113-A115. | MR | Zbl

[3] Canino (A.) . - Multiplicity of solutions for quasilinear elliptic equations, Top. Meth. Nonlin. Anal. 6 (1995), pp. 357-370. | MR | Zbl

[4] Canino (A.) and Degiovanni (M.) .- Nonsmooth critical point theory and quasilinear elliptic equations, Topological Methods in Differential Equations and Inclusions, Montreal 1994, NATO ASI Series, pp. 1-50. | MR | Zbl

[5] Cerami (G.) .- Un criterio di esistenza per i punti critici su varietà illimitate, Rend. Ist. Sci. Lombardo 112 (1978), pp. 332-336. | Zbl

[6] Corvellec (J.N.) .- Morse theory for continuous functionals, to appear in J. Math. Anal. Appl. 196 (1995), pp. 1050-1072. | MR | Zbl

[7] Corvellec (J.N.) and Degiovanni (M.) .- Nontrivial solutions of quasilinear equations via nonsmooth Morse theory, J. Diff. Eq. 136 (1997), pp. 268-293. | MR | Zbl

[8] Corvellec (J.N.), Degiovanni (M.) and Marzocchi (M.) .- Deformation properties for continuous functionals and critical point theory, Top. Meth. Nonlin. Anal. 1 (1993), pp. 151-171. | MR | Zbl

[9] Degiovanni (M.) and Marzocchi (M.) .- A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. IV, CLXVII (1994), pp. 73-100. | MR | Zbl

[10] Katriel (G.) .- Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H.-Poincaré, A.N.L. 11 (1994), pp. 189-209. | Numdam | MR | Zbl

[11] Ladyzhenskaya (O.A.) and Ural'Tseva (N.N.) .- Linear and quasilinear elliptic equations, Academic Press, New York, 1968. | MR | Zbl

[12] Rabinowitz (P.H.) .- Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Series Math. 65, Amer. Math. Soc., Providence, R.I., 1986. | MR | Zbl

[13] Struwe (M.) . - Multiple solutions of differential equations without the Palais-Smale condition, Math. Ann. 261 (1982), pp. 399-412. | MR | Zbl

[14] Struwe (M.) .- Quasilinear elliptic eigenvalue problems, Comment. Math. Helvetici 58 (1983), pp. 509-527. | MR | Zbl

[15] Szulkin (A.) .- Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H.-Poincaré, A.N.L. 3 (1986), pp. 77-109. | Numdam | MR | Zbl