@article{AFST_1997_6_6_3_525_0, author = {Orr\`u, Nicola}, title = {On a weakly hyperbolic equation with a term of order zero}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {525--534}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 6}, number = {3}, year = {1997}, mrnumber = {1610911}, zbl = {0895.35057}, language = {en}, url = {http://www.numdam.org/item/AFST_1997_6_6_3_525_0/} }
TY - JOUR AU - Orrù, Nicola TI - On a weakly hyperbolic equation with a term of order zero JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1997 SP - 525 EP - 534 VL - 6 IS - 3 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - http://www.numdam.org/item/AFST_1997_6_6_3_525_0/ LA - en ID - AFST_1997_6_6_3_525_0 ER -
%0 Journal Article %A Orrù, Nicola %T On a weakly hyperbolic equation with a term of order zero %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1997 %P 525-534 %V 6 %N 3 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U http://www.numdam.org/item/AFST_1997_6_6_3_525_0/ %G en %F AFST_1997_6_6_3_525_0
Orrù, Nicola. On a weakly hyperbolic equation with a term of order zero. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 6 (1997) no. 3, pp. 525-534. http://www.numdam.org/item/AFST_1997_6_6_3_525_0/
[CDS] Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scuola Norm. Sup. Pisa, 6 (1979), pp. 511-559. | Numdam | MR | Zbl
), ) and ) .-[CJS] Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa, 10 (1983), pp. 291-312. | Numdam | MR | Zbl
), ) and ) .-[Hör] Linear Partial Differential Operators, Springer, Berlin (1963).
) .-[Ka] The well posed Cauchy problem for hyperbolic operators, Exposé au Séminaire Vaillant (1989).
) .-[Ol] On the Cauchy problem for weakly hyperbolic equations of second order, Comm. Pure Appl. Math. 23 (1970), pp. 569-586. | MR
) .-