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Compact Jacobi matrices:
from Stieltjes to Krein and M(a, b)

WALTER VAN ASSCHE(1)

RÉSUMÉ. - Dans une note à la fin de son article Recherches sur les

fractions continues, Stieltjes donne la condition nécessessaire et suffisante
pour qu’une fraction continue soit représentée par un fonction méromor-
phe dans tout le plan complexe. Ce résultat est lié à l’étude des opérateurs
de Jacobi compacts. On présente le développement moderne des idées de
Stieltjes en accordant une attention particulière aux résultats de M. G.
Krein. On décrit ensuite la classe M(a, b) des perturbations de l’opérateur
constant de Jacobi par un opérateur compact, qui trouve son origine dans
le travail de Blumenthal en 1889.

ABSTRACT.- In a note at the end of his paper Recherches sur les

fractions continues, Stieltjes gave a necessary and sufficient condition
when a continued fraction is represented by a meromorphic function. This
result is related to the study of compact Jacobi matrices. We indicate how
this notion was developped and used since Stieltjes, with special attention
to the results by M. G. Krein. We also pay attention to the perturbation
of a constant Jacobi matrix by a compact Jacobi matrix, work which
basically started with Blumenthal in 1889 and which now is known as the
theory for the class M(a, b) .
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1. A theorem of Stieltjes

Stieltjes’ research in Recherches sur les fractions continues [25] deals with
continued fractions of the form

where the coefficients cxk are real and positive. Such a continued fraction

is nowadays known as an S-fraction, where the S stands for Stieltjes. By
setting bo = 1/03B11 and bn = 1/(03B1n03B1n+1) for n &#x3E; 1, and by the change of
variable z = 1/t, this continued fraction can be written as

where bk &#x3E; 0, which results from the positivity of the ak. Finally we can
"contact" this fraction by using repeatedly the identity

and the original S-fraction then changes to

with
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Such a continued fraction is known as a J-fraction, where the letter J

stands for Jacobi. This J-fraction and the original S-fraction are "nearly"
equivalent in the sense that the n-th convergent of the J-fraction is identical
to the 2n-th convergent of the S-fraction.

During his work in [25], in particular the sections § 68-69, Stieltjes shows
that the convergents of (1.1) are given by

where Un and Vn are polynomials, and the convergence of the series 03A3~k=1 bk
is necessary and sufficient for the convergence

for every t E C, uniformly on compact sets. The functions u and v are thus
both entire functions as they are uniform limits of polynomials. Hence the
continued fraction (1.1) converges to

and the function F is meromorphic in the complex t-plane and meromorphic
in the complex z-plane without the origin. Furthermore the zeros of úTn and
Pi are all real (and negative) and they interlace (nowadays a well known
property for orthogonal polynomials, observed a century ago by Stieltjes),
hence F has infinitely many poles in the z-plane, which accumulate at zero.
Stieltjes then writes this function as

where 03A3~k=0 sk = 1 and sk &#x3E; 0 for every &#x3E; 0 (s0 ~ 0), and then uses the
Stieltjes integral (which he introduced precisely for such purposes) to write
1L as

where 03A6 is a (discrete) distribution function with jumps of size sk/03B11 at the
points rk (k &#x3E; 0), and also at the origin if so &#x3E; 0. So Stieltjes has proved
the following result in [25, § 68-69]:
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THEOREM 1.1. - Suppose that bk &#x3E; 0 for k E N. Then

is a necessary and sufficient condition in order that th e continued fraction
(1.1) conuerges to

where u and v are entire functions and F is meromorphic for z ~ C B {0}.

In fact the condition (1.6) gives the separate convergence (1.4) of the nu-
merator and denominator of the convergents of the continued fraction and
allows to write F as the ratio of two entire functions in C B {0}. Such sepa-
rate convergence of numerator and denominator of a continued fraction was

proved earlier by Sleshinskii [24] in 1888, who showed that separate con-
vergence holds for the continued fraction (1.1) whenever 03A3~n=0|bn|  00.

Apparently Stieltjes did not know Sleshinskii’s result, and in fact Sleshin-
skü’s paper seemed to have been unnoticed for a long time until Thron gave
due credit to him in his survey on separate convergence [27].

In a note at the end of his paper [25], Stieltjes wants to find all the

cases such that the continued fraction (1.1) converges to a function F

meromorphic for tEe (or z E CB{0}). and not only those for which one has
the separate convergence (1.4) as in the case when (1.6) holds. Stieltjes still
assumes the bk to be positive. In the note he proves the following extension
of Theorem l.l:

THEOREM 1.2. - Suppose that bk &#x3E; 0 for k ~ N. Then

is a necessary and sufficient condition in order that the continued fraction
(1.1) converges to

rnn ...;w;;. 1 B

where F is meromorphic for z ~ C B {0}.

He proves the necessity of the condition in section 3 of the note, and
the sufficiency in section 4. Obviously condition (1.6) implies (1.7), but the
latter condition is weaker.
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The condition (1.7) given in Theorem 1.2 is also sufficient in the case

where the coefficients bn are allowed to be complex. This result was proved
by Van Vleck (see Section 6). But for complex bn condition (1.7) is no

longer necessary, as was shown by Wall [32], [33].

2. Compact Jacobi operators

For the J-fraction (1.2) the condition (1.7) is equivalent to

Furthermore, the stronger condition (1.6) is equivalent tc

Hence, Stieltjes’ results in terms of the J-fraction (1.2) show that the J-
fraction converges to a meromorphic function F in C B 101 if and only if (2.1)
holds, and this meromorphic function is given by (03B11z)-1u(1/z)/v(1/z),
with u and v entire functions, if and only if (2.2) holds. The convergence
holds uniformly on compact sets of the complex plane excluding the poles of
F, which accumulate at the origin. In Stieltjes’ analysis he always worked
with S-fractions for which bn &#x3E; 0 for all n, which gives certain restrictions
on the coefficients an and 03BBn of the J-fraction, but in fact the results also
hold for general real an and positive An.

with the coefficients of the J-fraction (1.2) one can construct an infinite
tridiagonal Jacobi matrix

With this infinite matrix we associate an operator, which we also call

J, acting on the Hilbert space £2 of square summable sequences. If the

coefficients an and An are bounded, then this operator is a self-adjoint
and bounded operator. which we call the Jacobi operator. In order to
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find eigenvalues and eigenvectors, one needs to solve systems of the form
Ju = xu, where u E £2 and x is an eigenvalue, which, when it exists, will be
real due to the self-adjointness. This readily leads to a three-term recurrence
relation

where u-1 = 0. The solution when uo = 1 is such that un = pn(x) is a

polynomial of degree n in the variable x and this is precisely the denominator
polynomial for the n-th convergent of the J-fraction. Another solution, with

uo = 0 and u1 = 1 gives a polynomial un = p(1)n-1 (x) of degree n - 1, and
this is the numerator polynomial for the n-th convergent of the J-fraction.
Applying the spectral theorem to the Jacobi operator J shows that there is
a positive measure p on the real line such that J is unitarily isomorphic to
the multiplication operator M acting on L2(M) in such a way that the unit
vector eo = (1, 0, 0, ...) E £2 (which is a cyclic vector) is mapped to the
constant function z - 1, and Jne0 is mapped to the monomial z - X n. A
simple verification, using the three-term recurrence relation, shows that the
unitary isomorphism also maps the n-th unit vector

to the polynomial pn , and since (en, £m) = 03B4m,n in the Hilbert space ~2,
this implies that (Pn, pm~ = pn(x)pm(x) d03BC(x) = 8m,n in the Hilbert

space L2(03BC), showing that we are dealing with orthogonal polynomials.
For more regarding this connection between spectral theory and orthogonal
polynomials, see e.g., [9], [20], [10, § XII.10, pp. 1275-1276, [26, pp. 530-
614]). LTnfortunately-, the spectral theorem (and the Riesz representation
theorem) came decades after Stieltjes so that Stieltjes was not using the
terminology of orthogonal polynomials, even though he clearly was aware
of this peculiar orthogonality property of the denominator polynomials, as
can be seen from section 11 in [25].

The spectrum of the operator J corresponds to the support of the spectral
measure M. This spectrum is real since J is self-adjoint. The measure p
in general consists of an absolutely continuous part, a singular continuous
part and an atomic (or discrete) part, and the supports of these three parts
correspond to the absolutely continuous spectrum, the singular continuous
spectrum and the point spectrum. The point spectrum is the closure of the
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set of eigenvalues of J, and thus all x E R for which 03A3~n=0p2n(x)  00 are

in the point spectrum. Moreover, one can show that 

In terms of the Jacobi operator J, Stieltjes’ results can be formulated as
follows. The spectral measure M corresponds to the distribution function
03A6 in (1.5) and is purely atomic and the point spectrum has 0 as its only
accumulation point if and only if (2.1) holds. When (2.2) holds, then the
eigenvalues are the reciprocals of the zeros of the entire function v, which
is obtained as the limit

Since v is the uniform limit (on compacta) of a sequence of polynomials,
it follows that v is an entire function. In fact, it is a canonical product
completely determined by its zeros, and the order of this canonical product
is less than or equal to one. Therefore the sum 03A3~k=0 1/|zk| converges,
where zk are the zeros of the entire function v.

In modern terminology, the condition (2.1) implies that the Jacobi

operator J is a compact operalor. In general, a linear operator A acting
on a Hilbert space 7i is called compact if it maps the unit ball in 7i onto
a set whose closure is compact. In other words, A is compact if for every
bounded sequence 1/Jn (n e N) of elements in the Hilbert space 7i, there
is always a subsequence Au§n (n E A C N) that converges. Compact
operators are sometimes also known as completely continuous operators,
but this terminology is not so much in use anymore. It is not hard to

see that for an operator associated with a banded matrix A of bandwidth
2m + 1, i.e. Ai,j = 0 whenever |i - jl &#x3E; m, for some fixed m, compactness
is equivalent with the condition that limn~~ An,n+k = 0 for every with
-m ~ k ~ m [1, § 31, pp. 93-94]. Indeed, a diagonal matrix (m = 0) is

compact if and only if the entries on the diagonal tend to 0. A banded
matrix is of the form A = Ao + 03A3mk=1(V*Ak + BkV), where V is the shift
operator and Ao, Ak, Bk (k = 1, 2, m) are diagonal operators, and
since l’ is bounded and compact operators form a closed two-sided ideal in
the set of bounded operators, this shows that A is compact if and only if each
of the diagonal matrices Ao, Ak, Bk is compact. Hence a Jacobi operator
is compact if and only if (2.1) holds. The simplest linear operators are, of
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course, operators acting on a finite dimensional Hilbert space, in which case
we are dealing with matrices. Next in degree of difficulty are the compact
operators, which can be considered as limits of finite dimensional matrices.

Indeed, the structure of the spectrum of a compact operator is quite similar
to the spectrum of a matrix since it is a pure point spectrum with only
one accumulation point at the origin, a result known as the Riesz-Schauder
theorem. This is in perfect agreement with Stieltjes’ result (Theorem 1.2)
and the poles of the meromorphic function F in fact correspond to the
point spectrum (the eigenvalues) of the operator J. So, Stieltjes’ theorem
is an anticipation of the Riesz-Schauder theorem (proved by Schauder in
1930) regarding the spectrum of a compact operator, but restricted to

tridiagonal operators. Similarly, Stieltjes’ Theorem 1.1 is related to a

subclass of the compact operators, namely those compact operators for
which 03A3~k=0 |xk|  oo, where xk are the eigenvalues of the operators.
These operators are known as trace class operators. One can show that
a banded operator A is trace class if 03A3~n=0 03A3mk=-m |An,n+k|  oc, hence

the condition (2.2) means that J is trace class, in which case the eigenvalues
are in tl.

3. Some orthogonal polynomials with compact Jacobi matrix

Stieltjes,’ theorems were rediscovered half a century later during the
investigation of (modified) Lommel polynomials. First, H. M. Schwartz
[23] considered continued fractions of the form (1.1) but allowed the bk to
be complex, and the more general J-fraction (1.2) with complex Ak and ak.

Later Dickinson [7], Dickinson, Pollak, and wannier [8], and Goldberg
[13] considered the polynomials hn,v satisfying the recurrence relation

with initial conditions h-1,v = 0 and h0,v = 1. These polynomials appear
in the study of Bessel functions and allow to express a Bessel function J n+v
as a linear combination of two Bessel functions Jv and Jv-1 as
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reducing the investigation of the asymptotic behaviour of Bessel functions
with high index to the investigation of the polynomials hn,v, which are
known as Lommel polynomials. considering pn = (n + v)lv hn, the three-
term recurrence is of the form

which corresponds to a J-fraction and Jacobi operator with coefficients

an = 0 and Àn = [4(n + v)(n + v - 1)]-1. Clearly limn~~ 03BBn = 0 so
that Stieltjes’ Theorem 1.2 holds, and we can conclude that the Lommel
polynomials are orthogonal with respect to an atomic measure with support
a denumerable set with accumulation point at the origin. The spectrum
of the Jacobi operator can be identified completely by investigating the
asymptotic behaviour of the Lommel polynomials, and it turns out that the
spectrum consists of the closure of the set {1/jk,v-1 : k E Z}, where jk,v-1
are the zeros of the Bessel function J v-1’ These points indeed accumulate
at the origin, but the origin itself is not an eigenvalue of the operator J.
Note that Goldberg [13] observed that the analysis of Dickinson, Pollak,
and Wannier [7], [8] was incomplete since they did not give any information
whether or not the accumulation point 0 had positive mass. The Jacobi
operator in this case is not trace class, since (2.2) is not valid. This is

compatible with the asymptotic behaviour jn,v ~ 7rn for the zeros of the
Bessel function.

For the Bessel functions there are several q-extensions, with correspond-
ing Lommel polynomials. For the Jackson q-Bessel functions the q-Lommel
polynomials were introduced by Ismail [14] who showed that these poly-
nomials are orthogonal on a denumerable set similar as for the Lommel
polynomials but involving the zeros of the Jackson q-Bessel functions. For
the Hahn-Exton q-Bessel function the q-analogue of the Lommel polyno-
mials turn out to be Laurent polynomials and in [16] it is shown that they
obey orthogonality with respect to a moment functional acting on Laurent
polynomials.

Other families of orthogonal polynomials with a compact Jacobi ma-
trix include the Tricomi-Carlitz polynomials, for which the asymptotic be-
haviour was recently studied by Goh and Wimp [12]. These polynomials
satisfy the three-term recurrence relation
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with 10 = 1 and f-1 = 0. For the orthonormal polynomials

[n !(a + n)/03B1]1/2fn this gives an = 0 and 03BBn = n/[(n + 03B1)(n + a - 1)],
so that 03BBn ~ 0 but the Jacobi operator is not trace class. The spectral
measure now is supported on the set {±1/k + a : k = 0, 1, 2, ...}, which
is indeed a denumera,ble set with an accumulation point at the origin, and
the elements are not summable. The Tricomi-Carlitz polynomials are also
known as the Carlitz-Karlin-McGregor polynomials [3] because Karlin and
lB1cGregor showed that they turn out to be the orthogonal polynomials
for the imbedded random walk of a queueing process with infinitely many
servers and identical service time rates. There are a number of other exam-

ples of orthogonal polynomials arising from birth-and-death processes for
which the Jacobi operator is compact. Van Doorn [29] showed that the or-
thogonal polynomials for a queueing process studied by B. Natvig in 1975,
where potential customers are discouraged by queue length, are orthogonal
on a denumerable set accumulating at a point. The birth-and-death pro-
cess governing this queueing process has birth rates A, = 03BB/(n + 1) (n ~ 0),
which expresses that the rate of new customers decreases as the number n

of customers in the queue increases, and death rates po = 0 and pn = jl"
which expresses that the service time does not depend on the queue length.
The corresponding orthogonal polynomials then satisfy the three-term re-
currence relation

The orthonormal polynomials qn then satisfy

and since

it follows that these polynomials correspond to a Jacobi matrix J which
can be written as J = pI + Jp, where Jp is a compact operator. Hence the
orthogonality measure is denumerable with only one accumulation point at
y. Van Doorn gives a complete description of the support of the measure.
Chihara and Ismail [6] studied these polynomials in more detail and showed
that the point p is not a mass point of the orthogonality measure, even
though it is an accumulation point of mass points. Chihara and Ismail also
study the queueing process with birth and death rates
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for which the Jacobi operator is again of the form J = p -f- Jp with Jp a
compact operator. The case a = 1 corresponds to the situation studied by
Natvig and van Doorn. Another way to model a queueing process where
potential customers are discouraged by queue length is to take

in which case the decrease is exponential. The corresponding orthogonal
polynomials turn out to be q-polynomials of Al-Salam and Carlitz [5, § 10,
p. 195].

The orthogonal polynomials Un associated with the Rogers-Ramanujan
continued fraction [2]

have a compact Jacobi operator, which in addition belongs to the trace
class. Several orthogonal polynomials of basic hypergeometric type (q-
polynomials) have a Jacobi matrix which is a compact operator that belongs
to the trace class, so that Stieltjes’ Theorem 1.1 can be used to find

the orthogonality relation for these polynomials. Often this orthogonality
relation can be written in terms of the q-integral

and for a  0  b this q-integral is given by

so that the support of the measure is the geometric lattice {aqk, bqk , k =
0, 1, 2, ...} which is denumerable and has 0 as the only accumulation point.
The orthogonal polynomials of this type are the big q-..lacobi polynomials,
the big q-Laguerre polynomials, the little q-Jacobi polynomials, the little

q-Laguerre polynomials (also know.n as the Wall polynomials [5, § 11 on
p. 198]), the alternative q-Charlier polynomials, and the Al-Salam-Carlitz
polynomials, which we already- mentioned earlier. These polynomials, with
references to the literature, can be found in [17].
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4. Krein’s theorem

The most interesting extension of Stieltjes’ Theorem 1.2 on compact
Jacobi operators was made by M. G. Krein [18]. He considered operators
of the form g(J), where J is a Jacobi operator and g a polynomial. It is

not so hard to see that the matrix for the operator g(J) is banded and

symmetric, and when J is a bounded operator, then g(J) is also bounded.
The bandwidth of g(J) is 2ni + 1 u.hen g is a polynomial of degree m. In
[18], Krein first shows that a banded operator A with matrix (ai,j)i,j~0 is
compact if and only if limi,j~~ ai,j = 0. But his main result is: 

THEOREM 4.1 (Krein). - In order that the spectrum of J consists of a
bounded set with accumulation points in txi, X2, ..., xm}, it is necessary
and sufficient that J is a bounded operator and g(J) is a compact operator,
where g(x) = (x - x1)(x - X2) ... (X - xm).

The polynomial g of lowest degree for which g(J) is a compact operator is
known as the minimal polynomial, and the zeros of the minimal polynomial
correspond exactly to the accumulation points of the spectrum of J. Krein
explicitly refers to Stieltjes’ work, which is a special case where the minimal
polynomial is the identity g : x ~ x and the spectrum is a compact subset of
(-~, 0] or [0, oo) if we make a reflection through the origin. Krein mentions
a remark by N. I. Akhiezer that, by changing Stieltjes’ reasoning somewhat,
one may by his method obtain the result for one accumulation point without
the restriction that the spectrum is on the positive (or negative) real axis.
However, Krein finds it improbable that the result for m &#x3E; 1 accumulation

points could be proved by Stieltjes’ method.

In terms of the corresponding orthogonal polynomials, Krein’s theorem
says that when g(J) is a compact operator, then the polynomials will be
orthogonal with respect to a discrete measure p and the support of this
measure has accumulation points at the zeros of g. It is not so difficult

to prove that orthogonal polynomials can have at most one zero in an

interval [a, b] for which J-l (la, b]) = 0. This means that also the zeros of

the orthogonal polynomials will cluster around these zeros of g.
In terms of the continued fraction (1.2) hrein’s result implies that the

continued fraction will converge to a function F which is meromorphic in
CB{x1, x2, ..., xm} and the poles of this meromorphic function accumulate
at the zeros of g.
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Recently it has been shown [11] that Krein’ theorem can be restated in
terms of orthogonal matrix polynomials, where the polynomials have matrix
coefficients with matrices from Rm m. Orthogonal matrix polynomials
satisfy a three-term recurrence relation with matrix coefficients, and with
these matrix recurrence coefficients one can form a block Jacobi matrix,
which defines a self-adjoint operator, but now one does not have a single
cyclic vector, but a set of m cyclic vectors. Consequently, the spectrum is
not simple and the spectral measure is a (positive definite) m x m matrix
of measures M = (03BCi,j)1~i,j~m. Starting with an ordinary Jacobi matrix,
the matrix g(J) is banded and can be considered as a block Jacobi matrix,
where the subdiagonals are triangular matrices. If g(J) is compact, then

by the Riesz-Schauder theorem the spectrum 03C3(g(J)) of g(J) has only one
accumulation point at the origin, which means that the spectral matrix
of measures is discrete and the support, which is the support of the trace
measure 03A3mj=1 03BCj,j, has only one accumulation point at the origin. The

spectral matrix of measures for g(J) is connected with the spectral measure
for M and in particular (J’(J) c g-1(03C3(g(J))), and since 03C3(g(J)) has only
one accumulation point at 0, it follows that the spectrum a(J) of J has
accumulation points at g-1 (0), which are the zeros of g.

5. The class M (a, b) and Blumenthal’s theorem

Compact Jacobi operators have also shown to be of great use in studying
orthogonal polynomials on an interval. In this section we will change
notation and consider the three-term recurrence relation

so that (-an+1, 03BBn) in (2.3) corresponds to (bn, an) in (5.1). This notation
is more common nowadays. If we consider orthogonal polynomials satisfying
a three-term recurrence relation with constant coefficients,

with initial values po = 1 and -1 = 0, then these polynomials are given by
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where the Un are the Chebyshev polynomials of the second kind, defined a,s

For these polynomials the orthogonality relation is

which follows easily from the orthogonality of the trigonometric system
{sin k03B8, k = 1, 2, 3, ...}. Hence, by an affine transformation, the polynomi-
als Pn (n e N) obey the orthogonality conditions

Hence these polynomials are orthogonal on the interval [b - a, b + a] and
they will serve as a comparison system for a large class of polynomials for
which the essential support is [b - a, b + a]. A nxeasure p on the real line
can always be decomposed as p = Mac + flsc + pd, where pac is absolutely
continuous, psc is singular and continuous, and pd is discrete (or atomic).
The essential support of p, corresponds to the support of pac + psc together
with the accumulation points of the support of J-ld. Hence, if a measure has
essential support equal to [b - a, b + a] then p can have mass points outside
[b - a, b + a], but the accumulation points should be on this interval. The
Jacobi operator for Pn has a matrix with constant values

If we perturb this operator by adding to it a compact Jacobi operator Jp,
so that we obtain a Jacobi operator
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then the Jacobi operator J has entries for which

and we say that J is a compact perturbation of Jo. There is a very nicE

result regarding compact perturbations of operators, which is quite usefu.
in the analysis of orthogonal polynomials [20].

THEOREM 5.1 (H. Weyl).2013 Suppose A is a bounded and self-adjoin
operator and C is a compact operator, then A + C and A have the sami
essential spectrum.

Applied to our analysis of orthogonal polynomials, this means that thE
orthogonal polynomials corresponding with a Jacobi operator J = Jo + Jp
where Jp is compact, have an essential spectrum on [b - a, b + a], hencE
the orthogonality measure p for these polynomials has support [b - a, b + a
U E, where E is at most denumerable with accumulation points only at
6 ± a. Compact perturbations of the operator Jo occur quite often, and
in 1979 Paul Nevai [21] introduced the terminology M(a,6) for the class
of orthogonal polynomials for which (5.2) holds. The investigation of thE
class M(a, b), however, goes back almost a century. The first to consider this
class was 0. Blumenthal, a student of Hilbert, whose Inaugural Dissertation
[4] was devoted to this class. In his dissertation, Blumenthal proves thE

following result regarding the continued fraction (1.1).

THEOREM 5.2 (Blumenthal).2013 Streben die Gr6ssen bn den endliche
von 0 verschiedenen limites:

zu, so liegen innerhalb des ganzen lnler1’alles

überall dicht Nullslellen der Funktionen-Reihe Q2n, ausserhalb desselben

niihern sich die Nullstellen mil wachserzdem n einer endlichen Zahl von

Grenzpunkten. (If the bn converge to positive limits b2n ~ t, b2n+1 - £1.
then the zeros of the sequence of functions Q2n will be dense on the interval

[-(2~~1+~+~1), 2~~1-~- ~1], outside of which the zeros for increasing
n will approach a finite number of limit points.)
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In terms of the J-fraction, the convergence in (5.3) is equivalent with

which corresponds to the class M(a, b), and Blumenthal’s conclusion is that
the zeros of the denominator polynomials (the orthogonal polynomials) are
dense on the interval [b - a, b -I- a] (the essential spectrum) and that outside
this interval the zeros converge to a finite number of limit points. The latter
statement, however, turns out to be incorrect, since outside the interval

[b - a, b + a] there can be a denumerable number of limit points of the zeros,
which can only accumulate at the endpoints b::f:a, which means that outside
[b - a - E, b + a + é] there are a finite number of limit points, and this is true
for every e &#x3E; 0 (but not for ~ = 0). Except for this, Blumenthal’s theorem
is really a beautiful result and a nice complement to Stieltjes’ Theorem 1.2
which deals with the special case t = fI = 0.

Blumenthal’s proof of the theorem was based on a result by Poincaré

[22] which describes the ratio asymptotic behaviour of the solution of a
finite order linear recurrence relation when the coefficients in the recurrence

relation are convergent.

THEOREM 5.3 (Poincaré). - If in the recurrence relation

the recurrence coefficients have limits

and if the roots Çi (i = 1, 2, ..., k) of the characteristic equation

all have different modulus. then either yn = 0 for all n &#x3E; no or there is a

root 03BE of the characteristic equation such that
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For a nice and comprehensible proof, see [19]. The case relevant

for the class M(a, b) corresponds to the second order recurrence relation
(5.1) for orthogonal polynomials corresponding to a Jacobi matrix J, and
(5.2) expresses the fact that the recurrence coefficients have limits. The

characteristic equation then is

for which the roots are

These two roots have equal modulus whenever (x - b) 2 - a2 ~ 0, hence for
x E [b - a, b + a], so that this simple observation already gives the important
interval. Poincaré’s theorem then shows that for x e [b - a, b + a] the
ratio pn+1(x)/pn(x) converges to one of the two roots of the characteristic
equation. Poincaré’s theorem does not tell you which root, but in the
case of orthogonal polynomials, we know that for x large enough the ratio
pn+1(x)/pn(x) behaves like 2x/a as x ~ 00, hence we need to choose the
root with largest modulus whenever is large enough. This asymptotic
behaviour can then be used to obtain information about the set of limit

points of the zeros of the orthogonal polynomials, which is how Blumenthal
arrived at his results. For a contemporary approach, see [20].

Blumenthal’s result thus deals with compact perturbations of Chebyshev
polynomials. If more can be said of the (compact) perturbation operator
J - Jo, then more can also be said of the spectral measure for the Jacobi
operator J. If J - Jo is a trace class operator, i.e.,

then there is a beautiful theorem by Kato and Rosenblum [15, Thm. 4.4 on
p. 540] that tells something about the nature of the spectral measure on the
essential spectrum [9].

THEOREM 5.4 (Kato-Rosenblum).- Suppose A is a self-adjoint opera-
tor in a Hilbert space H and C is a trace class operator in li and that A + C
is self-adjoint. Then the absolutely continuous parts of A and A + C’ are
unitarily equivalent.



- 212 -

The spectral measure for the operator Jo is absolutely continuous on

(b-a, b+a), hence the Kato-Rosenblum theorem implies that the orthogonal
polynomials corresponding to the Jacobi operator J are orthogonal with
respect to a measure with an absolutely continuous part in (b - a, b + a).
The measure can still have a discrete part outside (b - a, b + a). For even
more information regarding this absolutely continuous part, one needs an
even stronger condition such as [28]

in which case M’(x) = g(x)(x-b-a)±1/2(x-b+a)±1/2, where g is continuous
and strictly positive on [b - a, b + a]. Furthermore, in this case the number
of mass points outside [b - a, b + a] is finite and the endpoints b + a are not
mass points.

6. Van Vleck’s results

The class M(a, b) received a lot of attention the past two decades, starting
with Nevai in [21] who introduced the terminology and obtained various
results. See [28] and the references given there for a survey on the class
M(a, b). In the mean time it has become clear that this class has already
been studied in detail almost a century ago by Blumenthal (see previous
section), but also by Edward B. Van Vleck. He studied the class in terms of
continued fractions, much in the spirit of Stieltjes who also studied the class
of compact operators in terms of continued fractions. In [30] and [31] Van
Vleck considers continued fractions as in (1.1) for which the coefficients
converge. He does not require the restrictions bn &#x3E; 0 and allows the

coefficients to be complex.

THEOREM 6.1 (Van Vleck). If in the continued fraction
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one has limn~~ bn = b, then the continued fraction will converge in C
except

1) along the whole or part of a rectilinear cut from -1/4b to 0o with an
argument equal to that of the vector from the origin to -1/4b,

2) possibly at certain isolated points pl, P2, p3, ...

The limit of the continued fraction is holomorphic in CB[-1/4b, (0) except
at the points pl, P2, ... which are poles.

Van Vleck’s proof is again based on Poincaré’s theorem. Van Vleck

actually shows that the exceptional points can have accumulation points
on the cut. In case all the bn are positive these exceptional points can only
accumulate at the point -1/4b. Van Vleck also considers the corresponding
J-fraction (1.2). This will also be a continued fraction with converging
coefficients, and if bn - b, then obviously

The limit of the continued fraction (1.2) is equal to F(1/z), where F(t) is the
limit of the continued fraction (6.1). Hence F(1/z) is analytic in the complex
plane cut along the segment [-4b, 0], except at the points 1/P1, 1/p2, ...
which are poles. The cut [-4b, 0] is indeed the essential spectrum, since this
J-fraction is one that corresponds to the class M(2b, -2b). Van Vleck also
considers the limiting case b - 0 and thus was able to generalize Stieltjes’
Theorem 1.2 for complex coefficients, showing that (1.7) is a sufficient

condition (but not necessary condition, see Wall [32], [33]) for a continued
fraction to converge to a meromorphic function.
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