@article{AFST_1996_6_5_3_521_0, author = {Pakes, Anthony G.}, title = {A hitting time for {L\'evy} processes, with application to dams and branching processes}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {521--544}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 6, 5}, number = {3}, year = {1996}, mrnumber = {1440948}, zbl = {0879.60074}, language = {en}, url = {http://www.numdam.org/item/AFST_1996_6_5_3_521_0/} }
TY - JOUR AU - Pakes, Anthony G. TI - A hitting time for Lévy processes, with application to dams and branching processes JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1996 SP - 521 EP - 544 VL - 5 IS - 3 PB - Université Paul Sabatier PP - Toulouse UR - http://www.numdam.org/item/AFST_1996_6_5_3_521_0/ LA - en ID - AFST_1996_6_5_3_521_0 ER -
%0 Journal Article %A Pakes, Anthony G. %T A hitting time for Lévy processes, with application to dams and branching processes %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1996 %P 521-544 %V 5 %N 3 %I Université Paul Sabatier %C Toulouse %U http://www.numdam.org/item/AFST_1996_6_5_3_521_0/ %G en %F AFST_1996_6_5_3_521_0
Pakes, Anthony G. A hitting time for Lévy processes, with application to dams and branching processes. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 5 (1996) no. 3, pp. 521-544. http://www.numdam.org/item/AFST_1996_6_5_3_521_0/
[1] Fluctuation theory in continuous time, Adv. Appl. Prob. 7 (1975), pp. 705-766. | MR | Zbl
) .-[2] Continuous branching processes and spectral positivity, Stoch. Processes Appl. 4 (1976), pp. 217-242. | MR | Zbl
) .-[3] The work of Lajos Takács on probability theory. J. Appl. Prob. 31A (1994), pp. 29-39. | MR | Zbl
) .-[4] Regular Variation, C.U.P., Cambridge (1987). | MR | Zbl
), ) and ) .-[5] Generalized Gamma Convolutions and Related Classes of Distributions and Densities, Lecture Notes in Statistics, Springer-Verlag, New York, 76 (1992). | MR | Zbl
) . -[6] On the first passage time for one class of processes with independent increments, Theor. Prob. Appl. 10 (1965), pp. 331-334. | MR | Zbl
) .-[7] Stochastic Processes in Queueing Theory, Springer-Verlag, New York (1976). | MR | Zbl
) .-[8] Some interesting properties of Lagrangian distributions, Comm. Statist. 2 (1973), pp. 263-272. | MR | Zbl
) and ) .-[9] A note on Linnik's distribution, Statist. Prob. Lett. 9 (1990), pp. 305-306. | MR | Zbl
) .-[10] The branching process method in Lagrange random variate generation, Comm. Statist. Simula. 21 (1992), pp. 1-14. | Zbl
) .-[11] Probability Theory and its Applications, Wiley, New York, 2nd ed., 2 (1971).
) . -[12] Sample functions of stochastic processes with stationary, independent increments, In: P. E. Ney and S. Port eds, Advances in Probability, Dekker, New York, 5 (1974), pp. 241-396. | MR | Zbl
) .-[13] A storage model with continuous infinitely divisible inputs, Proc. Camb. Phil. Soc. 59 (1963), pp. 417-429. | MR | Zbl
) and ) .-[14] The Theory of Stochastic Processes II, Springer-Verlag, Berlin (1975). | MR | Zbl
) and ) .-[15] The supremum distribution of a Lévy process with no negative jumps, Adv. Appl. Prob. 9 (1977), pp. 417-422. | MR | Zbl
) .-[16] On the distribution of the time to first emptiness of a store with stochastic input, J. Aust. Math. Soc. 4 (1964), pp. 506-517. | MR | Zbl
) .-[17] Survival models for heterogeneous populations derived from stable distributions, Biometrika 73 (1986), pp. 387-396. | MR | Zbl
) . -[18] Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen (1971). | MR | Zbl
) and ) .-[19] Univariate Discrete Distributions, Wiley, New York, 2nd ed. (1993). | MR | Zbl
), ) and ) .-[20] Branching Processes with Continuous State Space, Math. Centrum, Amsterdam (1979). | MR | Zbl
) .-[21] The first passage time density for homogeneous skipfree walks on the continuum, Ann. Math. Statist. 34 (1963), pp. 1003-1011. | MR | Zbl
) . -[22] Some problems in the theory of dams, J. Roy. Statist. Soc. Ser. B. 19 (1957), pp. 207-212. | MR | Zbl
) .-[23] On continuous time models in the theory of dams, J. Aust. Math. Soc. 3 (1963), pp. 480-487. | MR | Zbl
) .-[24] Natural real exponential families with cubic variance functions, Ann. Statist. 18 (1990), pp. 1-37. | MR | Zbl
) and ) .-[25] An Introduction to Probability Theory, Clarendon Press, Oxford (1968). | MR | Zbl
) .-[26] The multiplicative process, Ann. Math. Statist. 20 (1949), pp. 206-224. | MR | Zbl
) .-[27] Some limit theorems for continuous-state branching processes, J. Aust. Math. Soc. Ser. A. 44 (1988), pp. 71-87. | MR | Zbl
) .-[28] Lagrange distributions and their limit theorems, SIAM J. Appl. Math. 32 (1977), pp. 745-754. | MR | Zbl
) and ) .-[29] Stochastic Storage Processes, Springer-Verlag, New York (1980). | MR | Zbl
) .-[30] On a regenerative phenomenon occurring in a storage model, J. Roy. Statist. Soc. Ser. B. 32 (1970), pp. 354-361. | MR | Zbl
) and ) .-[31] The two-sided exit problem for spectrally positive Lévy processes, Adv. Appl. Prob. 22 (1990), pp. 486-487. | MR | Zbl
) . -[32] On a class of infinitely divisible processes represented as mixtures of Gaussian processes, In: S. Cambanis, G. Samarodnitsky et M. Taqqu, eds, Stable Processes and Related Topics, Birkäuser, Boston (1991), pp. 27-41. | MR | Zbl
) .-[33] Inverse-Gaussian Distributions: A Case Study in Natural Exponential Families, Clarendon Press, Oxford (1993). | MR
) .-[34] On local properties of processes with independent increments, Theor. Prob. Appl. 10 (1965), pp. 317-322. | Zbl
) .-[35] Random Processes with Independent Increments, Kluwer Academic Publishers, Dordrecht (1991). | MR | Zbl
) .-[36] Ratio limit theorems for random walks on groups, Trans. Amer. Math. Soc. 125 (1966), pp. 86-100. | MR | Zbl
) .-[37] The distribution of the content of a dam when the input process has stationary independent increments, J. Math. Mech. 15 (1966), pp. 101-112. | MR | Zbl
) . -[38] Combinatorial Methods in the Theory of Stochastic Processes, Wiley, New York (1967). | MR | Zbl
) .-[39] Left-continuous random walk and the Lagrange expansion, Amer. Math. Monthly 82 (1975), pp. 494-499. | MR | Zbl
) .-[40] A duality law in the class of infinitely divisible laws. English translation in Sel, Trans. Math. Statist. Prob. 5 (1961), pp. 201-209. | MR
) .-[41] The first passage time of a level and the behavior at infinity for a class of processes with independent increments, Theor. Prob. Appl. 9 (1964), pp. 653-661. | MR | Zbl
) .-