@article{AFST_1995_6_4_4_705_0, author = {Az\'e, Dominique and Penot, Jean-Paul}, title = {Uniformly convex and uniformly smooth convex functions}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {705--730}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 6, 4}, number = {4}, year = {1995}, mrnumber = {1623472}, zbl = {0870.49010}, language = {en}, url = {http://www.numdam.org/item/AFST_1995_6_4_4_705_0/} }
TY - JOUR AU - Azé, Dominique AU - Penot, Jean-Paul TI - Uniformly convex and uniformly smooth convex functions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1995 SP - 705 EP - 730 VL - 4 IS - 4 PB - Université Paul Sabatier PP - Toulouse UR - http://www.numdam.org/item/AFST_1995_6_4_4_705_0/ LA - en ID - AFST_1995_6_4_4_705_0 ER -
%0 Journal Article %A Azé, Dominique %A Penot, Jean-Paul %T Uniformly convex and uniformly smooth convex functions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1995 %P 705-730 %V 4 %N 4 %I Université Paul Sabatier %C Toulouse %U http://www.numdam.org/item/AFST_1995_6_4_4_705_0/ %G en %F AFST_1995_6_4_4_705_0
Azé, Dominique; Penot, Jean-Paul. Uniformly convex and uniformly smooth convex functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 4 (1995) no. 4, pp. 705-730. http://www.numdam.org/item/AFST_1995_6_4_4_705_0/
[1] Fréchet Differentiability of convex functions, Acta Matematica 121 (1967), pp. 31-47. | MR | Zbl
) .-[2] Positivity of duality mappings, Bull. Am. Math. Soc. 73 (1967), pp. 200-203. | MR | Zbl
) .-[3] Gradients of convex functions, Trans. Am. Math. Soc. 139 (1969), pp. 443-467. | MR | Zbl
) and ) .-[4] A quantitative approach via epigraphic distances to stability of strong local minimizers, Technical report No 87-01, Univ. of Perpignan (1987).
) and ) .-[5] Nonlinear applied analysis, J. Wiley, New York (1984). | MR | Zbl
) and ) .-[6] Optimisation - Méthodes numériques, Masson, Paris (1976). | MR | Zbl
) .-[7] Introduction to Banach spaces and their geometry, Mathematical Studies 68, North-Holland, Amsterdam (1982). | MR | Zbl
) .-[8] The support functionals of a convex set, In Convexity edited by P. Klee, Proc. Symp. Pure Math. 7, Am. Math. Soc. Providence (1963), pp. 27-35. | MR | Zbl
) and ) .-[9] On the subdifferentiability of convex functions, Proc. Am. Math. Soc. 16 (1965), pp. 605-611. | MR | Zbl
) and ) .-[10] Problèmes non linéaires, Presses de l'Université de Montréal 15 (1966). | Zbl
) .-[11] Characterizations of uniform convexity, Pac. J. Math. 38, No 3 (1971), pp. 577-581. | MR | Zbl
) .-[12] Introduction à l'analyse numérique matricielle et à l'optimisation, Masson, Paris (1982). | MR | Zbl
) .-[13] Duality mappings in the nonlinear functional analysis, Ed. Acad. R.S.R., Bucharest (1974) (in Romanian). | MR
) .-[14] Geometry of Banach spaces, selected topics, Lecture Notes in Mathematics 485, Springer, Berlin (1975). | MR | Zbl
) .-[15] Perturbations, approximations and sensitivity analysis of optimal control systems, Springer Lecture Notes in Control 52 (1984). | MR | Zbl
) .-[16] Convexity, monotonicity and gradient processes in Hilbert spaces, J. Math. Anal. Appl. 53 (1976), pp. 145-158. | MR | Zbl
) .-[17] Two results in convex analysis, in "Optimization and related fields", Ed. by R. Conti, E. de Giorgi and F. Giannessi, Lecture Notes in Mathematics 1190, Springer Berlin (1986). | MR | Zbl
) .-[18] On the moduli of convexity and smoothness, Stud. Math. 56 (1976), pp. 121-155. | MR | Zbl
) .-[19] On subgradient duality with strong and weak convex functions, J. Austr. Math. Soc. 40, Ser. A (1986), 143-152. | MR | Zbl
) . -[20] p-convexity and second order duality, Util. Math. 29 (1986), pp. 71-85. | MR | Zbl
) . -[21] Programmation Mathématique, French translation, Mir, Moscow (1975). | Zbl
) .-[22] Minimization methods in the presence of constraints, Z. Vycisl. Mat. i. Fiz. 6, No 5 (1966), pp. 787-823. | MR | Zbl
) and ), .-[23] Convergence of minimizing sequences in conditional extremum problems, Sov. Math. Dokl. 7 (1967), pp. 764-767. | MR | Zbl
) and ) .-[24] Hadamard and Tyhonov well-posedness of a certain class of convex functions, J. Math. Anal. Appl. 88 (1982), pp. 204-215. | MR | Zbl
) and ) .-[25] The general theory of relaxation processes for convex functionals, Russ. Math. Surv. 25 (1970), pp. 57-117. | Zbl
) and ) .-[26] A certain transformation of convex functions and a duality of the β and δ characteristics of a β space, Dokl. Akad. Nauk. SSSR 187 (1969), pp. 33-45. | MR | Zbl
) .-[27] Méthodes numériques dans les problèmes d'extremum, French translation, Mir, Moskow (1975).
) and ) .-[28] Metric regularity, openness and Lipschitzian behaviour of multifunctions, Nonlinear Anal. Theory Methods Appl. 13, No 6 (1989), pp. 629-643. | MR | Zbl
) .-[29] Inversion of real valued functions and applications, Z.O.R. Methods and Models of Operations Research 34 (1990), pp. 117-141. | MR | Zbl
) and ) .-[30] On strongly convex and paraconvex dualities, in "Generalized Convexity and Fractional Programming with Economics Applications", Proc. Pisa. Italy (1988), A. Cambini et al. Eds. Lecture Notes in Economics and Mathematical Systems 345, Springer Verlag Berlin (1990), pp. 198-218. | MR | Zbl
) and ) .-[31] Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Sov. Math. Dokl. 7 (1967), pp. 72-75. | MR | Zbl
) . -[32] A Characterization of uniform convexity and application to accretive operators, Hiroshima Math. J. 11 (1981), pp. 229-234. | MR | Zbl
) . -[33] Convex functions, Academic Press, New York (1973). | MR | Zbl
) and ) .-[34] Monotone operators and the proximal point algorithm, SIAM J. Control Opt. 14 (1976), pp. 877-898. | MR | Zbl
) .-[35] Sur la dérivabilité de la norme dans l'espace de Banach, Dokl. Acad. Naukl. SSSR, 27 (1940), pp. 643-648. | MR | Zbl
) .-[36] Strong convexity of sets and functions, J. Math. Econ. 9 (1982) pp. 187-205. | MR | Zbl
) .-[37] Strong and weak convexity of sets and functions, Math. Oper. Res. 8 (1983), pp. 231-259. | MR | Zbl
) .-[38] On uniformly convex functionals, Vest. Mosk. Univ. 3, Ser. XV (1978), pp. 12-23. | MR | Zbl
), ) and ) .-[39] On uniformly quasi-convex functionals, Vest. Mosk. Univ. 4, Ser. XV (1978), pp. 18-27. | MR | Zbl
), ) and ) .-[40] Personal communication.
)[41] On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), pp. 344-374. | MR | Zbl
) .-[42] On equiwellset minimum problems, Appl. Math. Optimization 4 (1978), pp. 209-223. | MR | Zbl
) .-