TRAN NGOC GIAO

$H^\infty\text{-}\mathrm{extensibility}$ and finite proper holomorphic surjections

Annales de la faculté des sciences de Toulouse 6^e série, tome 3, n° 2 (1994), p. 293-303

<a>http://www.numdam.org/item?id=AFST_1994_6_3_2_293_0>

© Université Paul Sabatier, 1994, tous droits réservés.

L'accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

H^{∞} -extensibility and finite proper holomorphic surjections^(*)

TRAN NGOC GIAO⁽¹⁾

RÉSUMÉ. — Soit $\theta: X \to Y$ une application bornée, propre, holomorphe, et surjective entre deux espaces de Banach analytiques. Si Y possède la propriété de prolongement pour les fonctions H^{∞} , on montre que X la possède également. Réciproquement, si X possède cette propriété et X ne contient pas un ensemble analytique compact de dimension positive, alors toute application holomorphe d'un domaine de Riemann D étalé sur un Banach avec image dans Y peut être prolongée comme une application Gâteaux-holomorphe sur chaque prolongement H^{∞} de D; de surcroît, le prolongement est holomorphe dans le complémentaire d'une hypersurface.

ABSTRACT. — Let $\theta: X \to Y$ be a finite proper holomorphic surjection, where X and Y are Banach analytic spaces. It is shown that if Y has the holomorphic H^{∞} -extension property, so has X. Conversely if X has the holomorphic H^{∞} -extension property, where X does not contain a compact analytic set of positive dimension, then every holomorphic map from a Riemann domain D over a Banach space into Y can be extended Gateaux-holomorphically on every H^{∞} -extension of D. Moreover the extension is holomorphic outside a hypersurface.

The extension of holomorphic maps from a Riemann domain D over a Stein manifold to its envelope of holomorphy \widehat{D}_{∞} for the Banach algebra of bounded holomorphic functions $H^{\infty}(D)$ has been investigated by some authors.

For holomorphic maps with values in finite dimensional complete Cspaces, the problem was considered by Sibony [6], Hirschowitz [3], and recently by Nguyen van Khue and Bui Dac Tac [4]. The aim of the present paper is to consider the problem in the infinite dimensional case.

^(*) Reçu le 21 novembre 1993

⁽¹⁾ Department of Mathematics, Pedagogical University of Vinh, Viêt-nam

Let X be a Banach analytic space in the sense of Douady [1]. As in the finite dimensional case, we define the Carathéodory pseudodistance C_X on X by the formula

$$C_X(x,y)= \mathrm{Sup}\left\{ \left|f(x)-f(y)
ight|: |f|\leq 1\,,\,\,f\in H^\infty(X)
ight\}$$
 .

We say that X is a C-space if C_X is a distance defining the topology of X.

Let (D, p, B) and (D', q, B) be Riemann domains over a Banach space B. D' is called a H^{∞} -extension of D if there is a holomorphic map $e: D \to D'$ such that $p = q \cdot e$ and for every bounded holomorphic function f on D, there exists a bounded holomorphic function f' on D' such that $f = f' \cdot e$.

A Banach analytic space X is said to be a space having the holomorphic H^{∞} -extension property (for short, the HEH^{∞}-property) if for every holomorphic map g from a Riemann domain D over a Banach space into X there exists a holomorphic map g' from D' into X such that $g = g' \cdot e$, where D' is a H^{∞} -extension of D and D' is a C-space. In this case we say also that g can be extended to a holomorphic map g' on D'.

The main result of this note is the following.

THEOREM 1. — Let θ be a finite proper holomorphic map from a Banach analytic space X onto a Banach analytic space Y. Then:

- (i) if Y has the HEH[∞]-property and H[∞](X) separates the points of the fibers of θ, then X has the HEH[∞]-property;
- (ii) if X has the HEH^{∞} -property and X does not contain a compact analytic set of positive dimension, then every holomorphic map from D into Y can be extended Gateaux holomorphically on D', where D is a Riemann domain over a Banach space, D' is a H^{∞} -extension of D and D' is a C-space.

Moreover, the extension is holomorphic outside a hypersurface.

Let X be a Banach analytic space. We say that an upper semi-continuous function $\varphi : X \to [-\infty, \infty)$ is plurisubharmonic if for every holomorphic map $\sigma : \Delta \to X$ the function $\varphi \circ \sigma$ is subharmonic, where Δ is the unit disc.

Let Z be a Banach analytic space. By $F_c(Z)$ we denote the hyperspace of non-empty compact subsets of Z. An upper semi-continuous multivalued function $K: X \to F_c(Z)$, where X is a Banach analytic space, is called analytic in the sense of Slodkowski [7] if for every plurisubharmonic function

- 294 -

 Ψ on a neighbourhood of $\Gamma_{K\restriction_G}$, where G is an open set in X and $\Gamma_{K\restriction_G}$ denote the graph of K on G, the function

$$arphi(x) = \maxig\{\Psi(x,z) \mid z \in K(x))ig\}$$

is plurisubharmonic on G.

LEMMA 1 ([5]). — Let $K : Y \to F_c(X)$ be an analytic multivalued function such that card $K(y) < \infty$ for all $y \in Y$, where Y is a connected Banach analytic space. Assume that U and V are disjoint open subsets of X such that $K(y) \subset U \cup V$ for all $y \in Y$. Then either $K(y) \cap U = \emptyset$ for all $y \in Y$ or $K(y) \cap U \neq \emptyset$ for all $y \in Y$.

Proof. — Define Ψ on $Y \times (U \cup V)$ by

$$\Psi(y,z) = egin{cases} 1 & ext{if } z \in U \ 0 & ext{if } z \in V. \end{cases}$$

Then Ψ is plurisubharmonic on a neighbourhood of the graph of K, so φ is plurisubharmonic on Y, where

$$arphi(y) = \maxig\{\Psi(y,z) \mid z \in K(y))ig\} \ = ig\{egin{array}{c} 0 & ext{if } K(y) \cap U = \emptyset \ 1 & ext{if } K(y) \cap U
eq \emptyset. \end{array}
ight.$$

By the plurisubharmonicity of φ and the connectedness of Y, it implies that either $K(y) \cap U = \emptyset$ for all $y \in Y$ or $K(y) \cap U \neq \emptyset$ for all $y \in Y$. The lemma is proved. \Box

LEMMA 2.— Let $K : Y \to F_c(X)$ be an analytic multivalued function such that card $K(y) < \infty$ for all $y \in Y$. Then

$$V_{\boldsymbol{m}} = ig \{ y \in Y \mid \operatorname{card} K(y) < m ig \}$$

is closed in Y for every $m \geq 1$.

Proof.— Given a sequence $\{y_n\}$ in V_m , $y_n \to y^*$, choose disjoint neighbourhoods U_i of x_i , $i = 1, ..., \ell$, where $\{x_1, ..., x_\ell\} = K(y^*)$. Take a neighbourhood D of y^* such that

$$K(D) \subset \bigcup_{i=1}^{\ell} U_i.$$

- 295 -

Then by lemma 1, $K(y) \cap U \neq \emptyset$ for all $i = 1, ..., \ell$ and for all $y \in D$. Hence $m > \operatorname{card} K(y_n) \ge 1$ for sufficiently large n. This implies that $y^* \in V_m$. The lemma is proved. \Box

LEMMA 3.— Let $\theta: X \to Y$ be a finite proper holomorphic surjection, where X and Y are Banach analytic spaces. Then the multivalued function

$$K: Y \to F_c(X)$$

given by

$$K(y) = \theta^{-1}(y)$$

is analytic.

Proof

(i) Consider first the case where $Y = \Delta$, the unit disc in \mathbb{C} .

Since θ is proper, K is upper semi-continuous. Let Ψ be a plurisubharmonic function on a neighbourhood of $\Gamma_{K \upharpoonright_G}$, where G is an open subset of Δ . Since θ is a branch covering map [2], there exists a discrete sequence A in Δ such that

$$heta:X\setminus heta^{-1}(A) o \Delta\setminus A$$

is an unbranched covering map of order $m < \infty$. Let $y_0 \in \Delta \setminus A$ and

$$\theta^{-1}(y_0) = \{x_1, \ldots, x_m\}.$$

Take a neighbourhood W of y_0 such that

$$\theta^{-1}(W) = U_1 \cup \cdots \cup U_m,$$

where U_j are disjoint, $x_j \in U_j$ and $\theta : W \cong U_j$, j = 1, ..., m. Then the function

$$arphi(y) = \max_j \maxig \{ \Psi(y,x) \mid z \in heta^{-1}(y) \cap U_j ig \}$$

is subharmonic on $W \cap G$. Since φ is locally bounded on G, it follows that φ is subharmonic on G.

- 296 -

(ii) Consider now the general case where Y is a Banach analytic space.

Let φ be as in (i). Obviously φ is upper semi-continuous because of the upper semi-continuity of K and Ψ . It remains to check that $\varphi \circ h$ is subharmonic on Δ for every holomorphic map $h : \Delta \to X$. Consider the commutative diagram

where $\widetilde{\Delta} = \Delta \times_Y X$. By (i) and by the relation

$$arphi \circ h(\lambda) = \max \left\{ \Psiig(h(\lambda),zig) \ \Big| \ heta(z) = h(\lambda)
ight\}$$

it follows that $\varphi \circ h$ is subharmonic on Δ . The lemma is proved. \Box

Let X and D be Banach analytic spaces. A finite proper holomorphic surjection $\pi : X \to D$ is called a branch covering map if it satisfies the following:

- (i) there is a closed subset A of D which is a removable for bounded holomorphic germs on $D \setminus A$;
- (ii) $\pi: X \setminus \pi^{-1}(A) \to D \setminus A$ is a local biholomorphism and card $\pi^{-1}(z)$ is constant on every connected component of $D \setminus A$.

LEMMA 4.— Let θ be a finite proper holomorphic map from a Banach analytic space X onto an open set D in a Banach space B. Then θ is a branch covering map.

Proof. — Without loss of generality we may assume that D is convex. For each $n \ge 1$ put

$$F_n = \left\{y \in D \mid \operatorname{card} \theta^{-1}(y) < n
ight\}.$$

By lemma 2 and lemma 3, F_n is closed in D. Applying the Baire theorem to $D = \bigcup_{1}^{\infty} F_n$, we can find n_0 such that Int $F_n \neq \emptyset$. Put

$$m=\maxig\{\operatorname{card} heta^{-1}(y)\mid y\in\operatorname{Int}F_{n_0}ig\}$$
 .

- 297 -

Since $\theta: \theta^{-1}(E \cap D) \to E \cap D$ is a branch covering map for every finite dimensional subspace E of B [2], by the connectedness of $D \cap E$ for all subspace E of B, dim $E < \infty$, we have

$$egin{aligned} \supig\{\operatorname{card} heta^{-1}(y) \mid y \in Dig\} = \ &= \supig\{\operatorname{card} heta^{-1}(y) \mid y \in D \cap E\,, \ E \subset B\,, \ \dim E < \inftyig\} = m\,. \end{aligned}$$

 \mathbf{Put}

$$Z = \left\{y \in D \mid \operatorname{card} \theta^{-1}(y) < m
ight\}.$$

Then Z is closed in D, and from the finiteness and properness of θ it follows that

$$\theta: X \setminus \theta^{-1}(Z) \to D \setminus Z$$

is an unbranched covering map. It remains to show that Z is removable for bounded holomorphic germs. Let h be a bounded holomorphic function on $U \setminus Z$, where U is an open subset of D. Then for every finite dimensional space E of B such that

$$\supig\{\operatorname{card} heta^{-1}(y) \mid y \in E \cap Dig\} = m\,,$$

 $h\!\upharpoonright_{U\backslash Z}$ can be extended holomorphically on U. From the relation

$$D = igcup \left\{ E \cap D \; \Big| \; E \subset B \, , \; \dim E < \infty \, ,
ight.$$
 $\sup \left\{ \operatorname{card} heta^{-1}(y) \; | \; y \in D \cap E
ight\} = m
ight\}$

it follows that h can be extended to a bounded Gateaux-holomorphic function \hat{h} on U. By the boundedness of \hat{h} , we deduce that \hat{h} is holomorphic on U. The lemma is proved. \Box

LEMMA 5.— Let $\theta : X \to D$, where D is a C-manifold, be a branch covering map. Denote by $SH^{\infty}(X)$ and $SH^{\infty}(D)$ the spectra of Banach algebras $H^{\infty}(X)$ and $H^{\infty}(D)$, respectively. Let $\hat{\theta} : SH^{\infty}(X) \to SH^{\infty}(D)$ be the map induced by θ . Then

$$\widehat{\theta}:\widehat{\theta}^{-1}(D)\to D$$

is also a branch covering map.

- 298 -

Proof.— Obviously $\hat{\theta} : \hat{\theta}^{-1}(D) \to D$ is finite, proper and surjective, since $H^{\infty}(X)$ is an integral extension of finite degree of $H^{\infty}(D)$. By lemma 4, it suffices to prove that $\hat{\theta}^{-1}(D)$ is a Banach analytic space. Let B(0,r) (resp. $B^*(0,r)$) denote the open ball in $H^{\infty}(X)$ (resp. $(H^{\infty}(X))^*$) centred at 0 with radius r > 0. Consider the holomorphic map

$$F:(D\setminus Z) imes B^*(0,2)\longrightarrow H^\infty(B(0,2))$$

given by

$$F(z,w)(h) = w(h)^m + \sigma_{m-1}(h \circ p_1(z), \ldots, h \circ p_m(z))w(h)^{m-1} + \cdots + \sigma_0(h \circ p_1(z), \ldots, h \circ p_m(z)),$$

where z is the branch locus of θ , m the order of θ and $\sigma_0, \ldots, \sigma_{m-1}$ are elementary symmetric polynomials in m variables and

$$heta^{-1}(z) = ig(p_1(z),\,\ldots,\,p_m(z)ig) \quad ext{for } z\in D\setminus Z\,.$$

Since $\sigma_0, \ldots, \sigma_{m-1}$ are bounded holomorphic functions on $D \setminus Z$, it follows that F is holomorphic on $D \times B^*(0,2)$. We have

$$F^{-1}(\mathbf{0}) = \{(z,w) \mid \widehat{\theta}(w) = z\} \cong \widehat{\theta}^{-1}(D)$$

Hence $\widehat{\theta}: \widehat{\theta}^{-1}(D) \to D$ is a branch covering map. The lemma is proved. \Box

LEMMA 6.— Every Banach space has the HEH^{∞} -property.

Proof.— Let D be a Riemann domain over a Banach space B and D' a H^{∞} -extension of D. Let $f: D \to E$ be a holomorphic map, where E is a Banach space.

For each $x^* \in E^*$, by $\widehat{x^*f}$ we denote the holomorphic extension of x^*f on D'. Since D' is a H^{∞} -extension of D, from the open mapping theorem, it follows that

$$\|\widehat{x^*f}\| = \|x^*f\|$$
 for all $x^* \in E^*$.

On the other hand, by the uniqueness, $\widehat{x^*f}(z)$ is a continuous linear function on E^* for every $z \in D'$. Thus we can define a bounded map $\widehat{f}: D' \to E^{**}$ by

$$(\widehat{f}(z))(x^*) = \widehat{x^*f}(z)$$

- 299 -

which is separately holomorphic in variables $z \in D'$ and $x^* \in E^*$. From the boundedness of $\widehat{f}(D')$ we deduce that \widehat{f} is holomorphic and $\widetilde{f}(D') \subset E$. Obviously \widehat{f} is a holomorphic extension of f on D'. The lemma is proved. \Box

Proof of theorem 1

(i) Let first Y have the HEH^{∞} -property. Let $f: D \to X$ be a holomorphic map, where D is a Riemann domain over a Banach space B. By hypothesis, there is a holomorphic map $g: D' \to Y$ which is a holomorphic extension of θf on D', where D' is a H^{∞} -extension of D. Consider the commutative diagram

where $G = D' \times_Y X$, $\tilde{\theta}$ and \tilde{g} are the canonical projections, α and e are the canonical maps. By lemma 4, $\tilde{\theta}$ is a branch covering map. Let H denote the branch locus of $\tilde{\theta}$. Consider the commutative diagram

$$D \setminus e^{-1}(H) \xrightarrow{\widetilde{g}} V \xrightarrow{\widetilde{g}} (D' \setminus H) \xrightarrow{\widetilde{\delta}} SH^{\infty}(G \setminus \widetilde{\theta}^{-1}(H))$$

$$D \setminus e^{-1}(H) \xrightarrow{\widetilde{\theta}} D' \setminus H \xrightarrow{\widetilde{\theta}} D' \setminus H \xrightarrow{\widetilde{\theta}} SH^{\infty}(D' \setminus H) = SH^{\infty}(D')$$

where

$$\widehat{\widetilde{ heta}}: \operatorname{SH}^{\infty} ig(G \setminus \widetilde{ heta}^{-1}(H) ig) \longrightarrow \operatorname{SH}^{\infty} ig(D' \setminus H ig) \cong \operatorname{SH}^{\infty}(D')$$

is induced by $\widetilde{\theta}: G \setminus \widetilde{\theta}^{-1}(H) \to D' \setminus H$. From lemma 5, it follows that

$$\widehat{\widetilde{ heta}}:\widehat{\widetilde{ heta}}^{-1}ig(D'\setminus Hig)\longrightarrow D'\setminus H$$

is a branch covering map. By lemma 6, $\left(H^{\infty}(G\setminus \tilde{\theta}^{-1}(H))\right)^*$ has the HEH^{∞} -property.

- 300 -

Since $D' \setminus H$ is also a H^{∞} -extension of $D \setminus e^{-1}(H)$, there exists

$$h:D'\setminus H\longrightarrow \left(H^{\infty}ig(G\setminus \widetilde{ heta}^{-1}(H)ig)
ight)^{\prime}$$

which is a holomorphic extension of

$$\operatorname{id} \alpha: D \setminus e^{-1}(H) \longrightarrow \left(H^{\infty} \big(G \setminus \widetilde{\theta}^{-1}(H) \big) \right)^*$$

From the relation $\widehat{\tilde{\theta}}h = \delta$, where $\delta: D' \setminus H \to \operatorname{SH}^{\infty}(D' \setminus H)$ is the canonical map, we have $h(D' \setminus H) \subset \widehat{\tilde{\theta}}^{-1}(D' \setminus H)$. Since $H^{\infty}(X)$ separates the points of the fibers of θ , there exists a holomorphic mapping $\widehat{\tilde{g}}: \widehat{\tilde{\theta}}^{-1}(D' \setminus H) \to X$ such that $g \widehat{\tilde{\theta}} = \theta \widehat{\tilde{g}}$. Put

$$f_1=\widetilde{\widetilde{g}}h$$
.

Assume now $z \in H$. Take two neighbourhoods U and V of z and g(z), respectively, such that $g(U) \subset V$ and $\theta^{-1}(V)$ is an analytic set in a finite union W of balls in a Banach space. Then $f_1: U \setminus H \to W$ can be extended holomorphically on U. This implies that f_1 and hence f can be extended holomorphically on D'.

(ii) Let X be a space having the HEH^{∞} -property and let $g: D \to Y$ be a holomorphic map, where D is a Riemann domain over a Banach space B. Let D' be a H^{∞} -extension of D which is a C-space. Consider the commutative diagram \tilde{q}

where $G = D \times_Y X$, $\tilde{\theta}$ and \tilde{g} are the canonical projections.

Obviously $\widehat{\tilde{\theta}}$: SH^{∞}(G) \rightarrow SH^{∞}(D') is finite, proper and surjective, since $H^{\infty}(G)$ is an integral extension of finite degree of $H^{\infty}(D)$ and every bounded holomorphic function on D can be extended to a bounded holomorphic function on D'. By lemmas 4 and 5, $\widetilde{\theta}$ and $\widehat{\tilde{\theta}}: \widehat{\tilde{\theta}}^{-1}(D') \rightarrow D'$ are branch covering maps. Let H denote the branch locus of $\widehat{\tilde{\theta}}: \widehat{\tilde{\theta}}^{-1}(D') \rightarrow D'$. Consider the commutative diagram

where δ is the canonical map. Since every bounded holomorphic function on $G \setminus \tilde{\theta}^{-1}(e^{-1}(H))$ can be extended to a bounded holomorphic function on $\operatorname{SH}^{\infty}\left(G \setminus \tilde{\theta}^{-1}(e^{-1}(H))\right)$ and the topology of $\widehat{\tilde{\theta}}^{-1}(D' \setminus H)$ is defined by bounded holomorphic functions, it follows that $\widehat{\tilde{\theta}}^{-1}(D' \setminus H)$ is a H^{∞} extension of $G \setminus \tilde{\theta}^{-1}(e^{-1}(H))$ and it is a *C*-space. By hypothesis, \tilde{g} can be extended to a holomorphic map

$$\widehat{\widetilde{g}}_0: \widehat{\widetilde{ heta}}^{-1}(D'\setminus H) \longrightarrow X$$
.

It is easy to see that $\tilde{e} \, \tilde{\theta}^{-1}(x) = \widehat{\tilde{\theta}}^{-1}(e(x))$ for every $x \in D \setminus e^{-1}(H)$. This yields

$$\widehat{ ilde{g}}_0centcolor _{\widehat{ heta}^{-1}(e(x))} = ext{const} \quad ext{for all } x\in D\setminus e^{-1}(H)\,.$$

Since $\widehat{\widetilde{\theta}}: \widehat{\widetilde{\theta}}^{-1}(D' \setminus H) \to D' \setminus H$ is a branch covering map, it follows that the exists a holomorphic map $\widehat{g}_0: D' \setminus H \to Y$ such that $\theta \, \widehat{\widetilde{g}}_0 = \widehat{g} \, \widehat{\widetilde{\theta}}$.

X does not contain a compact set of positive dimension. By the Hironaka singular resolution theorem, for every finite dimensional subspace E of B such that $q^{-1}(E) \not\subset e(H)$,

$$\widehat{\widetilde{g}}_{0}|_{\widehat{\widetilde{ heta}}^{-1}(q^{-1}(E)\setminus H)}$$

can be extended to a holomorphic map $\widehat{\widetilde{g}}_E: \widehat{\widetilde{\theta}}^{-1}(q^{-1}(E)) \to X$. This yields that $\widehat{g}_0 \upharpoonright_{q^{-1}(E)\setminus H}$ can be extended to a holomorphic map $\widehat{g}_E: q^{-1}(E) \to Y$. Thus \widehat{g}_0 and hence g can be extended to a Gateaux holomorphic map $\widehat{g}: D' \to Y$ which is holomorphic on $D' \setminus H$. The theorem is proved. \Box

Acknowlegment

I should like to thank my research supervisor Dr N. V. Khue for helpful advice and encouragement.

References

- DOUADY (A.) .— Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier, Grenoble, 16, n° 1 (1966), pp. 1-95.
- [2] FISCHER (G.) .- Complex Analytic Geometry, Springer Verlag, Berlin, Lecture Notes in Math. 538 (1976).
- [3] HIRSCHOWITZ (A.) .— Domaines de Stein et fonctions holomorphes bornées, Math. Ann. 213 (1975), pp. 185-193.
- [4] KHUE (N.V.) and TAC (B.D.) .— Extending holomorphic maps in infinite dimensions, Studia Math. 45 (1990), pp. 263-272.
- [5] RANSFORD (T.J.). Open mapping, inversion and implicit function theorems for analytic multivalued functions, Proc. London Math. Soc. (3), 49 (1984), pp. 537-562.
- [6] SIBONY (N.). Prolongement des fonctions holomorphes bornées et métriques de Carathéodory, Invent. Math. 29 (1975), pp. 205-230.
- [7] SLODKOWSKI (Z.). Analytic set-valued functions and spectra, Math. Ann. 256 (1981), pp. 363-386.