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Almost periodic solutions
of forced second order

Hamiltonian systems

JOËL BLOT(1)

Annales de la Faculte des Sciences de Toulouse Vol. XII, n° 3, 1991

RÉSUMÉ. 2014 Nous etudions des equations différentielles du second ordre
forcees par un terme p.p. (presque-periodique) du type q(t) + V’ (q(t)) =
e(t). En supposant V et V’ lipschitziennes, bornées ou périodiques,
nous obtenons que l’ensemble des termes forqants p.p. e pour lesquels
1’equation possede une solution p.p. est un sous-ensemble dense de

l’espace des fonctions p.p. pour une norme appropriée. Nous appliquons
ce resultat a 1’equation du pendule force.

ABSTRACT. - We study second order differential equations forced by
an a.p. (almost periodic) term, like q(t) + Y~ {q(t)~ = e(t). Under some
hypotheses of Lipschitz, boundedness or periodicity on V and V’, , we
obtain that the a.p. forcing terms e for which there exists an a.p. solution
of the equation constitute an everywhere dense subset of the space of the
a.p. functions relatively at an appropriate norm. We apply this result to
the forced pendulum equation.

Introduction

We consider the forced second order equations:

where q(t) E IRN, V’ is the gradient of the function V E IR~,
and e is an almost periodic forcing term. The homogeneous equation
q(t) + V’~q(t)~ = 0 is an hamiltonian system; the hamiltonian of this

equation is 
-
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We precise some notations. denotes the space of the u.a.p.

(uniformly almost periodic, i.e. Bohr almost periodic) functions from IR
into IR~ ([2] chapter 1, [9]). When k E IN U {oo}, denotes the

space of the functions , f E such that the derivative of order j,
} E for every j between 0 and k. denotes the set of

the f E that are analytic functions on IR. is a Banach

space for the norm of supremum

When k E IN , is a Banach space for the norm

When ,f E ~R+), i.e. f is locally Lebesgue-integrable from iR into
)R-t-, its superior mean value is

When f E its mean value (when it exists) is

For a real p > 1, is the closure of into for

the semi-norm := it is a space of a.p. (almost periodic)
functions in the sense of Besicovitch ([2] chapter 2). If f E then

,f II IIp = ([2] p. 93), the relation I I , f - 9 I ( p = 0 is denoted by
f -.r g, and the quotient-space is : _ .). In practice,
in order to keep light notations, we do not distinguish between an element
of and its class of equivalence in Endowed with the

norm )) , is a Banach space. The norm ~, ~ , I 2 of is

the euclidean norm associated to the inner ( f :== ~t{/(~) - ~ g(t) } t, and
B2 is a Hilbert space.

When f E and A E IR, we denote a(/; ; a) := 
11.( f ) :_ ~.1 E IR; ; a( f ; .1 ) ~ 0 ~ and mod( f ) the Z-module generated by
11( f ) in IR. When M is a Z-module in IR, and k E IR U ~oo~ U ~a~, we define



and when p > 1 we define

Now, we recall the definitions of some spaces, like Sobolev spaces, special
to the almost periodicity ([7] § 2, 3). Following Vo-Khac, when f E B2(RN),
we denote (when it exists) by ~f the limit in B2 (IRN) of the quotients

f ~ when r --~ 0, r ~ 0, where := I(t + r). Then

is the space of the f E B2(IRN) such that ~f exists in B2(IRN).
Endowed with the inner product

is a Hilbert space, and the Euclidean associated norm is denoted

by 11.111,2.
is the space of the ,f E such that := v(v f )

exists in B2(IRN). Endowed with the inner product

Hilbert space, and the Euclidean associated norm is denoted

by 112,2’
When M is a Z-module in IR, and ,j E {1, 2},

When f E B2(IRN) (resp. B2(IRN; M)), we also consider the following
norm:

1 . Preliminary results

PROPOSITION 1. - Let M be a real symmetric negative definite N x N
matrix. Then we have:

I) the unique solution into B2,2(IRN) of the equation ~2h + Mh -- 0 is
2

h - 0.
2



ii~ for each k E there exists a unique h E such that

~2h + Mh -~- k. . Moreover mod(h) C mod(k~.
2

Proof

i~ Let 1~ E s.t. 02h + Mh .,, 0. Then, for all .1 E IR, we have
2

If a(h ; a) ~ 0, then a2 is an eigenvalue of M, that is impossible since M is
negative definite and a2 > 0. And so a(h ; a) = 0 for every a E IR, therefore,
using the Parseval equality

we see that h ~ 0.
2

ii) We fix k E ~2 (IR~~. For every .1 E IR, .t2 cannot be an eigenvalue of
M, and so (M - A~) is an invertible linear operator from ~N onto ~N . We
denote

We can endow ~N with a basis in which the matrix representation of M is a
diagonal matrix diag[ m1, ... mN ] , with ma  0 for every a = 1, ... , N .
The ma are the eigenvalues of M and the basis is constituted by eigenvectors
of M. In this spectral basis, the component of index a of the vector cx is

Consequently



. Since ~ is independant of A and (a(k ; G ~~) ([2] p. 104) the
previous inequality implies that ~N). By the theorem of
Riesz-Fisher-Besicovitch ([2] p. 109) there exists a unique h E B2(~N) s.t.
cx = a(h ; .1) for every A E !R. The equalities

ensure us that h E B2(RN).
Ever in the same spectral basis, for the component of index a, we have:

therefore = ~l ~ ~ ! A~~ I 1 ; .1) ( . . We remark that

0, therefore a 2 I 1  ~ 2 - ma ~ 1. . And
so

and, in summing above a, we obtain:

We see that E .~2(IR, ~~), and consequently, by the theorem of
Riesz-Fisher-Besicovitch, there exists f E B2(~N) s.t. = a(/; ; ~) for
every Since



we can say that ,f E B2 (IRN). Moreover a(/; A) = ; ~1~, therefore by
[7] (prop. 6), we can conclude that ,f = Vh, and so h E 

In using the same spectral basis of ~n, we note that

and consequently

Therefore (-.l2ca~ ~ E ~~~ and by the theorem of Riesz-Fisher-
Besicovitch, we know that there exists g E B2 (~~) s.t. a(g ; ~) _ 
for every A E IR. With the equalities

we see that g E Since a(g ; a) = ; a~, by [7], prop. 6, we
can say that g = V(Vh) = and so h e 

Lastly we have

for all A E IR, therefore we have k. That justifies the existence.

The uniqueness results of i) .
After our construction of the solution h, it is clear that

The assertion i) implies that there don’t exist any non-zero u.a.p.

solution, in of the ordinary differential equation:

This non-existence can easily be verifiable in writing (2) as a first order
linear system with constant coefficients and in formulating the explicit form
of the general solution as in [1] (p. 222). This non-existence is also an easy



consequence of the study of the lagrangian systems with convex lagrangians
~ ~5~ ~ ~6~ ) -

When k E we can formulate the following forced ordinary
differential equation

The assertion ii) implies that (3) admits at most one solution in 
But it is not true that (3) possesses at least a solution in for each

k E In keeping our scheme of proof, because of the inequalities

we can assert that (3) possesses a solution in when the Fourier-

Bohr series of k is absolutly convergent, since in this case the Fourier-

Bohr series of h, it, it are also absolutely convergent. For example, when
k is a trigonometric polynomial or a finite sum of periodic functions, (3)
admits a solution in In this situation, happens a phenomema
like that of the theorem of Malkin ([14] p. 222). It is possible to deduce of
a theorem of Fink (theorem 5.11 p. 91 in [12]) some more refined sufficient
(but not necessary) conditions on A(k) to ensure the existence of a solution
in of (3). Another way to describe the situation of (3) consists
to say that the linear differential operator h ~ + Mh, from AP2(IRN) in

is not surjective; its range is everywhere dense in since

it contains all the trigonometric polynomials, but its range is not closed into

Now, we deduce from proposition 1 an explicit formula that relates
the norms 

~ defined in the introduction and the Fourier-Bohr
coefficients of f . 

’

PROPOSITION 2

i) If f E then we have:



ii~ If M is a Z-module in R, and ,f E .M~ then we have:

Proof - We introduce a linear functional on in taking
:= ~ x~ = (,f ~ Using the Cauchy-Schwarz inequality, we

obtain:

and U is continuous, U e (the star indicates the topological dual
space) . By the definition of ) ) , we have ) ] U ) ) = ) ) . By the theorem
of representation of F. Riesz in the Hilbert spaces ([10] p. 81) there exists
a unique u e such that U(z) = (u ) z) for all z e and

~U~ I " ° so have l l f I I * " °

If I denotes the identity matrix N x N, taking M = -I in proposition
1 it) we can assert that there exists h e such that - (- f) .

2
Then 

, _ ,

([7] prop. 9), therefore == ~h ~ The uniqueness of u in the theorem
of F. Riesz implies that ~ == u. Therefore, we have = II ~ II 1,2’

In using the Parseval equality in B2(IRN), we have

But, the relation a(V2h - t~ ; a) = a(-,f ; a) implies:

therefore



Finally we obtain:

That j ustifies i) . The proof of it) is similar. 0

2. Results of Density

THEOREM 1. . - Let V E C1(IRN, IR) that satisfy the following conditions:
i~ V is bounded above on 

ii~ V’ is bounded on IRN;
iii) there ezists a constant al > 0 s. t.

iv) Then, the following assertion holds: for each e E such

that = 0, for each E > 0, denoting M := mod(e), there

exists eE E ; M~ such that lie - eE  E and there ezists

qE E ; M ~ verifying

Comments

After proposition 2, the inequality  E means that the

Fourier-Bohr coefficients of e~ are near to those of e. In the following proof,
we shall see that we can choose qE as a trigonometric polynomial. The two
most important tools of the proof are the Ekeland variational principle ~11~
and the calculus of variations in mean ([3], [4], [7]).

Proof . The condition ii) ant the mean value theorem permits us to
write



The Nemytski operator built on V is := V o u. By theorem
3 of [7], we know that NV E , B1 (IR)) , V’(u) E 

(NV)’(u) . h = V’(h) . h, for r.j h E Since the operator M is
linear continuous on B1(IR), the functional := is Fréchet

C1 on B2(IRN) and 1~ = ~ t~~.
Now, we fix e E such that = 0 and we fix E > 0. We

denote mod(e) by M.

By the theorem of the uniform approximation of Weierstrass-Bohr ([9]
p. 81) we can assert that there exists a trigonometric polynomial

with A(e) such that lie -  E/2. Since M{e} = 0, we have
0 g A( e) and consequently all the aa are different to zero. We take the

trigonometric polynomial

We see that Q = P.
We introduce the action functional

From the properties above mentioned of the functional ~, it is easy to see
that J E C1 ~B1 ~2 (IRN ; M) , IR) and that

(see also theorems 4, 5 in [7] and proposition 1 of [8]). By the hypothesis i), J
is bounded from below on B1’2 (IRN ; M). And so we can apply the Ekeland
variational principle ([11] p. 27) and assert that there exists u E 
such that  E/4 (the norm if that of the dual space 81~2(IRN ; M)*).
By the Weierstrass-Bohr theorem, we can take a trigonometric polynomial
v, with A( v) C ~1(u), such that v is near to u, and by the continuity of J’,
such that



Consequently we have J’(v)  E/2, with v E ; M~. Therefore, for
all t~ E M) such that (I h I) 1 2  1, we have

( ~7~ proposition 9). If we denote z := i~ + V’(v + Q), we have z E

M) (~3~ proposition 3) and the previous inequalities mean that
(I z II *,M  E~4. Taking ee := P + z, qE := v ~- C~, we have

We recall that a mapping F : : IRN  IRd is said multiply periodic when
there exist real numbers Tl, T2, ... , TN such that the partial mapping
x03B1 ~ F(x1, ..., x, ... , x N) is T03B1-periodic for each between 1 and N and
for each fixed xl, ... , ..., xN.

THEOREM 2.2014 Let V E IR~ a multiply periodic potential func-
tion. Then the conclusion of theorem 1 holds.

Proof. - Since the derivative of a periodic function is periodic, we see
that the gradient mapping V’ : IRN  IRN and the hessian mapping
Y" : IRN ~ IRN X N are also multiply periodic. We denote

it is a compact subset ofRN. . Because of the continuity and the compactness,
the three upper bounds



are finite. Consequently, in using the mean value theorem, the hypotheses
i), iii), iv) of theorem 1 are satisfied. 0
Wl ?rL V is multiply periodic, for the case of the periodic forcing terms,

we dispose of the theorem of Willem ([13] § 1.6). Let us remark that the

case of the a.p. forcing terms is not a consequence of the case of the periodic
forcing terms, since the subset of the periodic functions is not everywhere
dense in the . when the algebraic dimension of the
module M is greater than 1.

3. An application: the forced pendulum

Here, we consider the pendulum equation forced by a u.a.p. function:

Taking N = 1 and V(q) _ - cos q, it is a particular case of (1).

THEOREM 3. - For each e E such that = 0, and for
each E > 0, denoting M := mod(e); there exists ee E M) such that

~e~ 2014 e iI *,M  E and there exists a trigonometric polynomial qe (with real

values) such that

Proof. - It is a corollary of theorem 2. In the proof of theorem 1, we

have seen that we can choose qE as a trigonometric polynomial, and since

qE, ?~ and the function sin are analytic, we have necessarily the analyticity
of e~. 0

This result is different from that of [8] (theorem 2). Here, we do not
assume that e = E, where E E AP2(IR) and osc(2)  ’~/2, and so theorem 3
is less restrictive than the theorem of [8]. But here, we only have a density
relatively to I~ ’ (I *~~, instead of (I ~ as in [8], and is

coarser than a ~.~2-density.
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