@article{SPS_2002__36__194_0, author = {Chafa{\"\i}, Djalil}, title = {Gaussian maximum of entropy and reversed {log-Sobolev} inequality}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {194--200}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {36}, year = {2002}, mrnumber = {1971586}, zbl = {1033.60013}, language = {en}, url = {http://www.numdam.org/item/SPS_2002__36__194_0/} }
TY - JOUR AU - Chafaï, Djalil TI - Gaussian maximum of entropy and reversed log-Sobolev inequality JO - Séminaire de probabilités de Strasbourg PY - 2002 SP - 194 EP - 200 VL - 36 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_2002__36__194_0/ LA - en ID - SPS_2002__36__194_0 ER -
Chafaï, Djalil. Gaussian maximum of entropy and reversed log-Sobolev inequality. Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 194-200. http://www.numdam.org/item/SPS_2002__36__194_0/
1. Sur les inégalités de Sobolev logarithmiques. with an introduction by D. Bakry and M. Ledoux, to appear in "Panoramas et Synthèses, Société Mathématique de France, 2000. | MR | Zbl
, , , , , , , and .2. Optimal heat kernel bounds under logarithmic Sobolev inequalities. ESAIM Probab. Statist., 1:391-407 (electronic), 1997. | Numdam | MR | Zbl
, , and .3. Shift inequalities of gaussian type and norms of barycenters. preprint, september 1999. | MR
, , and .4. Geometric asymptotics and the logarithmic Sobolev inequality. Forum Math., 11(1):105-137, 1999. | MR | Zbl
.5. The convolution inequality for entropy powers. IEEE Trans. Information Theory, IT-11:267-271, 1965. | MR | Zbl
.6. The size of singular component and shift inequalities. Ann. Probab., 27:416-431, 1999. | MR | Zbl
.7. Super-additivity of Fisher's information and logarithmic Sobolev inequalities. J. Funct. Anal., 101(1):194-211, 1991. | MR | Zbl
.8. Elements of information theory. John Wiley & Sons Inc., New York, 1991. A Wiley-Interscience Publication. | Zbl
and .9. Information inequalities and uncertainty principles. In Tech. Rep., Dept. of Statist. Stanford Univ., 1990.
.10. Information-theoretic inequalities. IEEE Trans. Inform. Theory, 37(6):1501-1518, 1991. | MR | Zbl
, , and .11. Logarithmic Sobolev inequalities. Amer. J. Math., 97(4):1061-1083, 1975. | MR | Zbl
.12. Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Probabilités, XXXIII, Lecture Notes in Math., pages 120-216. Springer, Berlin, 1999. | Numdam | MR | Zbl
.13. The geometry of Markov Diffusion Generators. Ann. Fac. Sci. Toulouse Math., IX(2):305-366, 2000. | Numdam | MR | Zbl
.14. Information and information stability of random variables and processes. Holden-Day Inc., San Francisco, Calif., 1964. Translated by Amiel Feinstein. | MR | Zbl
.15. A mathematical theory of communication. Bell System Tech. J., 27:379-423, 623-656, 1948. | MR | Zbl
.16. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Information and Control, 2:101-112, 1959. | MR | Zbl
.